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FIG. 5: 90% confidence level upper limit on �SI from this
work (thick black line) with the 1� (green) and 2� (yel-
low) sensitivity bands. Previous results from LUX [6] and
PandaX-II [7] are shown for comparison. The inset shows
these limits and corresponding ±1� bands normalized to the
median of this work’s sensitivity band. The normalized me-
dian of the PandaX-II sensitivity band is shown as a dotted
line.

injecting an undisclosed number and class of events in
order to protect against fine-tuning of models or selec-
tion conditions in the post-unblinding phase. After the
post-unblinding modifications described above, the num-
ber of injected salt and their properties were revealed to
be two randomly selected 241AmBe events, which had
not motivated any post-unblinding scrutiny. The num-
ber of events in the NR reference region in Table I is con-
sistent with background expectations. The profile likeli-
hood analysis indicates no significant excesses in the 1.3 t
fiducial mass at any WIMP mass, with a p-value for the
background-only hypothesis of 0.28, 0.41, and 0.22 at
6, 50, and 200 GeV/c2, respectively. Figure 5 shows the
resulting 90% confidence level upper limit on �SI . The
2� sensitivity band spans an order of magnitude, indi-
cating the large random variation in upper limits due to
statistical fluctuations of the background (common to all
rare-event searches). The sensitivity itself is una↵ected
by such fluctuations, and is thus the appropriate mea-
sure of the capabilities of an experiment [44]. The inset
in Fig. 5 shows that the median sensitivity of this search
is ⇠7.0 times better than previous experiments [6, 7] at
WIMP masses > 50 GeV/c2.

In summary, we performed a DM search using an ex-
posure of 278.8 days ⇥ 1.3 t = 1.0 t⇥yr, with an ER
background rate of (82+5

�3 (sys) ± 3 (stat)) events/(t ⇥
yr ⇥ keVee), the lowest ever achieved in a DM search
experiment. We found no significant excess above back-
ground and set an upper limit on the WIMP-nucleon
spin-independent elastic scattering cross-section �SI at
4.1⇥10�47 cm2 for a mass of 30 GeV/c2, the most strin-

gent limit to date for WIMP masses above 6 GeV/c2. An
imminent detector upgrade, XENONnT, will increase the
target mass to 5.9 t. The sensitivity will improve upon
this result by more than an order of magnitude.
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Obvious shortcomings in our understanding of particle cosmology (such 
as the dark matter and the baryon asymmetry of the universe), and no 
evidence of new physics at LHC and DM direct search may just point us 
towards new approaches, especially 
the Radio telescope experiments (SKA, FAST, GBT…) and
the Laser Interferometer experiments (LISA, Tianqin, Taiji…)
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  The axion cold dark matter and strong-CP
The two famous DM candidates which have pretty  
beautiful physics motivation
➢WIMP DM from SUSY:Unfortunately, DM search 

and collider experiments disfavor this candidate 
➢Axion or Axion-like DM from strong-CP problem 

or string-theory: still favored by current data, most 
promising DM candidate

We firstly study using the SKA-like experiments to 
explore the resonant conversion of cold DM axions 
from magnetized astrophysical sources, such as 
neutron star, magnetar, pulsar.
FPH, K. Kadota, T. Sekiguchi, H. Tashiro, Phys.Rev. D97 (2018) no.12, 123001



Magnetosphere of Neutron star, pulsar or Magnetar



Magnetosphere : about 100 r

r ~ 10km

r(resonant)

Green Bank Telescope (GBT)
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• Diameter : 100 m 

• Range : 0.1 ~ 116 GHz 

• Type : Off-axis Gregorian 

• Focal Length : 60 m

https://greenbankobservatory.org/science/telescopes/gbt/

Axion cold DM 
adiabatically resonant 

convert to photon

 

Radio telescope search for the resonant conversion of cold dark matter
axions from the magnetized astrophysical sources

Fa Peng Huang,1 Kenji Kadota,1 Toyokazu Sekiguchi,2 and Hiroyuki Tashiro3
1Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS), Daejeon 34051, Korea

2Research Center for the Early Universe (RESCEU), Graduate School of Science,
The University of Tokyo, Tokyo 113-0033, Japan

3Department of Physics, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan

(Received 22 March 2018; revised manuscript received 15 May 2018; published 8 June 2018)

We study the conditions for the adiabatic resonant conversion of the cold dark matter (CDM) axions into
photons in the astrophysically sourced strong magnetic fields such as those in the neutron star
magnetosphere. We demonstrate the possibility that the forthcoming radio telescopes such as the SKA
(Square Kilometre Array) can probe those photon signals from the CDM axions.
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I. INTRODUCTION

Since the proposal of the Peccei-Quinn (PQ) mechanism
as an elegant solution of the QCD strongCP problem, there
have been many attempts to search for the axion which
naturally arises as a pseudoscalar particle of the PQ
symmetry [1–7]. Besides the QCD axions, more generally,
the axion-like particles (ALPs) also have been widely
discussed and can commonly arise in the string theory
[8]. The possibility for these axions/ALPs to be the CDM
candidates also gives a tantalizing motivation to search for
them [9–12]. It is intriguing that the axion CDMmass range
μeV–meV (corresponding to the frequency 0.1–100 GHz)
which is motivated from the QCD axion as a CDM
candidate turns out to overlap with the frequency range
which the radio telescope can probe [13–15].

We seek the radio telescope probe of CDM axions
through their adiabatic resonant conversion into photons
in the astrophysically sourced strong magnetic fields such
as those in the vicinity of the neutron stars/magnetars. This
is in stark contrast to the relativistic axion with the X-ray
energy for which it has been claimed that the adiabatic
resonant conversion cannot be realized in the strongly
magnetized plasma, such as the neutron star magneto-
sphere, due to the significant vacuum polarization contri-
bution to the photon dispersion relation [16,17].
The axion and photon can convert to each other in

presence of the magnetic fields through the Primakoff
process, and many attempts have been made to seek the

axions using a powerful magnet in the laboratory to result
in the tight bounds on the axion mass and its coupling to
photons [18–24]. Many studies also have been done for the
axion search using the astrophysically sourced magnetic
fields such as the intergalactic magnetic fields and stellar
magnetic fields [16,17,25–30]. The use of actual astro-
physical data from the gamma ray, X-ray, optical, and radio
telescopes also helped in reducing the viable axion param-
eter space, but many of those analyses assumed the
relativistic axion converting into a photon or the CDM
axion decaying into two photons [31–34]. The potential
radio telescope probe of the nonrelativistic axion converted
into the photon in the presence of the astrophysical
magnetic fields has been recently studied assuming the
nonresonant conversion but little study has been done on
the resonant conversion for the radio surveys [35–38]. Our
study on the adiabatic resonant conversion of the CDM
axion would complement those previous studies for the
further radio telescope exploration of the axion search.
Section II outlines the setup of our study, and Sec. III
examines the conditions for the adiabatic resonant con-
version of axions into photons. Section IV discusses the
detectability of the photon flux by a radio telescope as a
result of such an efficient axion-photon conversion.

II. THE AXION-PHOTON WAVE PROPAGATION
IN THE MAGNETIC FIELDS

The Lagrangian for the axion-photon system in the
presence of the magnetic fields relevant for the magnetized
astrophysical sources such as the neutron stars is

L ¼ −
1

4
F μνF μν þ 1

2
ð∂μa∂μa −m2

aa2Þ þ Lint þ LQED; ð1Þ

where a is the axion with the mass ma, and F μν is the
electromagnetic field tensor. The pseudoscalar axion can
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  Axion-photon conversion in magnetosphere

The Lagrangian for axion-photon conversion the 
magnetosphere 

Massive Photon in the magnetosphere 
of the neutron star obtains the effective 
mass in the magnetized plasma.  
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convert to the spin-1 photon in the presence of the external
magnetic field perpendicular to the photon propagation,
and the interaction term in the Lagrangian for the electro-
magnetic field and the axion is

Lint ¼
1

4
gF̃ μνF μνa ¼ −gE ·Ba; ð2Þ

where g represents the axion-photon coupling with the
dimension ½mass%−1, E is the electric field associated with
the photon, and B is the transverse component (with respect
to the photon propagation) of the magnetic field.1 The
axion in our discussions, for the sake of brevity, refers to
the axion and more generally to the ALP as well defined by
this Lagrangian characterized by its mass and coupling to
the photon (we accordingly treat ma, g as independent
parameters).
LQED represents the quantum correction to the Maxwell

equation (due to the QED vacuum polarization), and it can
be given by the Euler-Heisenberg action whose leading
order term is [16,39]

LQED ¼ α2

90m4
e

7

4
ðF μν F̃ μνÞ2; ð3Þ

where α ¼ e2=4π is the fine-structure constant. The photon
obtains the effective mass in the magnetized plasma. The
contribution of the photon mass m2

γ ¼ Qpl −QQED comes
from the vacuum polarization

QQED ¼ 7α
45π

ω2 B 2

B 2
crit

; ð4Þ

with B crit ¼ m2
e=e ¼ 4.4 × 1013 G and the plasma mass

characterized by the plasma frequency ωpl,

Qplasma ¼ ω2
plasma ¼ 4πα

ne
me

; ð5Þ

with the charged plasma density ne. It has been pointed out
that the QED vacuum polarization effect spoils the reali-
zation of the adiabatic resonant conversion between the
relativistic axion (with the observable X-ray energy range)
and the photon in the vicinity of a neutron star with strong
magnetic fields [16,17]. We note here that the vacuum
polarization effect is not important compared with the
plasma effect for our axion CDM scenario. As a simple
estimation, adopting the Goldreich-Julian charge density
[40] for the plasma density,

nGJe ¼ 7 × 10−2
1s
P
B ðrÞ
1 G

1

cm3
; ð6Þ

where P is the neutron star spin period,

Qpl

QQED
∼ 5 × 108

!
μeV
ω

"
2 1012 G

B
1 sec
P

: ð7Þ

We can, hence, safely ignore QQED with respect to Qpl for
the parameter range of our interest because of a small
photon frequency ω relevant for the frequency range
sensitive to the radio telescopes in our CDM axion scenario
(ω ∼ma).
The equation for the axion-photon plane wave with a

frequency ω reads
#
ω2 þ ∂2

z þ
!−m2

γ gB ω

gB ω −m2
a

"$!
γ

a

"
¼ 0; ð8Þ

where we assumed for simplicity the time-independent
magnetic field B ðrÞ [16]. The mass matrix here can be
diagonalized by the rotation unitary matrix,

U ¼
!

cos θ̃ sin θ̃

− sin θ̃ cos θ̃

"
; ð9Þ

with

cos 2θ̃ ¼
m2

a −m2
γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4g2B 2ω2 þ ðm2
γ −m2

aÞ2
q

sin 2θ̃ ¼ 2gB ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g2B 2ω2 þ ðm2

γ −m2
aÞ2

q ; ð10Þ

where the tilde represents the mixing angle in the medium
to be distinguished from that in the vacuum. The maximum
mixing can occur when m2

γðrÞ ≈ma. The mass eigenvalues
are

m2
1;2 ¼

ðm2
γ þm2

aÞ '
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

γ −m2
aÞ2 þ 4g2B 2ω2

q

2
ð11Þ

with the corresponding momentum for the mass eigen-
states:

k21;2 ¼ ω2 −m2
1;2: ð12Þ

If the magnetic field is homogeneous, the conversion
probability for the axion into photon becomes

pa→γ ¼ sin2 2θ̃ðzÞ sin2½zðk1 − k2Þ=2% ð13Þ

for the wave dominated by the axion component at z ¼ 0.
This is analogous to the neutrino oscillations, and we can
interpret the axion-photon conversion in an analogous
manner. Even though the magnetic field is inhomogeneous
in the neutron star magnetosphere, the conversion in such a

1The photon here has a liner polarization parallel to the
external magnetic field. The other photon polarization state
and the photon mass term due to the Cotton-Mouton effect
(which can cause the birefringence) are of little importance in our
discussions and thus will be ignored [16,39].
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the parameter range of our interest because of a small
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If the magnetic field is homogeneous, the conversion
probability for the axion into photon becomes

pa→γ ¼ sin2 2θ̃ðzÞ sin2½zðk1 − k2Þ=2% ð13Þ

for the wave dominated by the axion component at z ¼ 0.
This is analogous to the neutrino oscillations, and we can
interpret the axion-photon conversion in an analogous
manner. Even though the magnetic field is inhomogeneous
in the neutron star magnetosphere, the conversion in such a

1The photon here has a liner polarization parallel to the
external magnetic field. The other photon polarization state
and the photon mass term due to the Cotton-Mouton effect
(which can cause the birefringence) are of little importance in our
discussions and thus will be ignored [16,39].
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nonuniform magnetic field can be studied analogously to
the MSWeffect for the neutrino oscillations in the spatially
varying matter background [41,42]. The wave initially
dominated by the axion component can maximally mix
with the photon in the resonance region in the presence of
the strong magnetic fields, and it gets adiabatically trans-
formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
We now more quantitatively discuss the conditions for

the adiabatic resonant conversion of the CDM axion into
photons.

III. THE ADIABATIC RESONANT CONVERSION
OF AXIONS INTO PHOTONS

The resonance can occur when the maximum mixing
angle is realized for m2

γðrÞ ≈m2
a. The photon mass or the

plasma mass depends on the plasma density. The realistic
modeling of the magnetosphere of a neutron star is beyond
the scope of this paper, and we simply assume a simple
dipole magnetic field with a magnitude at the neutron star
surface B 0 and the charged plasma density obeying the
Goldreich-Julian density,
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and
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where r0 is the neutron star radius. The resonance radius is
defined at the level crossing point m2
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a $ gB ω.
From the mixing angle given in Eq. (10),
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where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2

γ .
We first examine the adiabatic condition for the sufficient

conversion of axions. The adiabatic resonant conversion
requires that the region in which the resonance is approx-
imately valid inside the resonance width,

δr ∼ δfjdf=drj−1res ∼ 2c1jdf=drj−1res; ð18Þ

is sufficiently bigger than the oscillation length scale at the
resonance,

losc ¼
2π
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δr > losc hence requires
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The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density

RADIO TELESCOPE SEARCH FOR THE RESONANT … PHYS. REV. D 97, 123001 (2018)

123001-3

nonuniform magnetic field can be studied analogously to
the MSWeffect for the neutrino oscillations in the spatially
varying matter background [41,42]. The wave initially
dominated by the axion component can maximally mix
with the photon in the resonance region in the presence of
the strong magnetic fields, and it gets adiabatically trans-
formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
We now more quantitatively discuss the conditions for

the adiabatic resonant conversion of the CDM axion into
photons.

III. THE ADIABATIC RESONANT CONVERSION
OF AXIONS INTO PHOTONS

The resonance can occur when the maximum mixing
angle is realized for m2

γðrÞ ≈m2
a. The photon mass or the

plasma mass depends on the plasma density. The realistic
modeling of the magnetosphere of a neutron star is beyond
the scope of this paper, and we simply assume a simple
dipole magnetic field with a magnitude at the neutron star
surface B 0 and the charged plasma density obeying the
Goldreich-Julian density,

B ðrÞ ¼ B 0
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defined at the level crossing point m2
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where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2

γ .
We first examine the adiabatic condition for the sufficient

conversion of axions. The adiabatic resonant conversion
requires that the region in which the resonance is approx-
imately valid inside the resonance width,
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is sufficiently bigger than the oscillation length scale at the
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losc ¼
2π

jk1 − k2jres
; ð19Þ

δr > losc hence requires

jd ln f=drj−1res > 650½m'
!
ma

μeV

"
3
!
vres
10−1

"!
1=1010 GeV

g

"
2

×
!
1012 G
B ðrresÞ

"
2
!
μeV
ω

"
2

: ð20Þ

The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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nonuniform magnetic field can be studied analogously to
the MSWeffect for the neutrino oscillations in the spatially
varying matter background [41,42]. The wave initially
dominated by the axion component can maximally mix
with the photon in the resonance region in the presence of
the strong magnetic fields, and it gets adiabatically trans-
formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
We now more quantitatively discuss the conditions for

the adiabatic resonant conversion of the CDM axion into
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The resonance can occur when the maximum mixing
angle is realized for m2

γðrÞ ≈m2
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plasma mass depends on the plasma density. The realistic
modeling of the magnetosphere of a neutron star is beyond
the scope of this paper, and we simply assume a simple
dipole magnetic field with a magnitude at the neutron star
surface B 0 and the charged plasma density obeying the
Goldreich-Julian density,
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where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2

γ .
We first examine the adiabatic condition for the sufficient

conversion of axions. The adiabatic resonant conversion
requires that the region in which the resonance is approx-
imately valid inside the resonance width,

δr ∼ δfjdf=drj−1res ∼ 2c1jdf=drj−1res; ð18Þ

is sufficiently bigger than the oscillation length scale at the
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The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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convert to the spin-1 photon in the presence of the external
magnetic field perpendicular to the photon propagation,
and the interaction term in the Lagrangian for the electro-
magnetic field and the axion is

Lint ¼
1

4
gF̃ μνF μνa ¼ −gE ·Ba; ð2Þ

where g represents the axion-photon coupling with the
dimension ½mass%−1, E is the electric field associated with
the photon, and B is the transverse component (with respect
to the photon propagation) of the magnetic field.1 The
axion in our discussions, for the sake of brevity, refers to
the axion and more generally to the ALP as well defined by
this Lagrangian characterized by its mass and coupling to
the photon (we accordingly treat ma, g as independent
parameters).
LQED represents the quantum correction to the Maxwell

equation (due to the QED vacuum polarization), and it can
be given by the Euler-Heisenberg action whose leading
order term is [16,39]

LQED ¼ α2

90m4
e

7

4
ðF μν F̃ μνÞ2; ð3Þ

where α ¼ e2=4π is the fine-structure constant. The photon
obtains the effective mass in the magnetized plasma. The
contribution of the photon mass m2

γ ¼ Qpl −QQED comes
from the vacuum polarization

QQED ¼ 7α
45π

ω2 B 2

B 2
crit

; ð4Þ

with B crit ¼ m2
e=e ¼ 4.4 × 1013 G and the plasma mass

characterized by the plasma frequency ωpl,

Qplasma ¼ ω2
plasma ¼ 4πα

ne
me

; ð5Þ

with the charged plasma density ne. It has been pointed out
that the QED vacuum polarization effect spoils the reali-
zation of the adiabatic resonant conversion between the
relativistic axion (with the observable X-ray energy range)
and the photon in the vicinity of a neutron star with strong
magnetic fields [16,17]. We note here that the vacuum
polarization effect is not important compared with the
plasma effect for our axion CDM scenario. As a simple
estimation, adopting the Goldreich-Julian charge density
[40] for the plasma density,

nGJe ¼ 7 × 10−2
1s
P
B ðrÞ
1 G

1

cm3
; ð6Þ

where P is the neutron star spin period,

Qpl

QQED
∼ 5 × 108

!
μeV
ω

"
2 1012 G

B
1 sec
P

: ð7Þ

We can, hence, safely ignore QQED with respect to Qpl for
the parameter range of our interest because of a small
photon frequency ω relevant for the frequency range
sensitive to the radio telescopes in our CDM axion scenario
(ω ∼ma).
The equation for the axion-photon plane wave with a

frequency ω reads
#
ω2 þ ∂2

z þ
!−m2

γ gB ω

gB ω −m2
a

"$!
γ

a

"
¼ 0; ð8Þ

where we assumed for simplicity the time-independent
magnetic field B ðrÞ [16]. The mass matrix here can be
diagonalized by the rotation unitary matrix,

U ¼
!

cos θ̃ sin θ̃

− sin θ̃ cos θ̃

"
; ð9Þ

with

cos 2θ̃ ¼
m2

a −m2
γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4g2B 2ω2 þ ðm2
γ −m2

aÞ2
q

sin 2θ̃ ¼ 2gB ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g2B 2ω2 þ ðm2

γ −m2
aÞ2

q ; ð10Þ

where the tilde represents the mixing angle in the medium
to be distinguished from that in the vacuum. The maximum
mixing can occur when m2

γðrÞ ≈ma. The mass eigenvalues
are

m2
1;2 ¼

ðm2
γ þm2

aÞ '
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

γ −m2
aÞ2 þ 4g2B 2ω2

q

2
ð11Þ

with the corresponding momentum for the mass eigen-
states:

k21;2 ¼ ω2 −m2
1;2: ð12Þ

If the magnetic field is homogeneous, the conversion
probability for the axion into photon becomes

pa→γ ¼ sin2 2θ̃ðzÞ sin2½zðk1 − k2Þ=2% ð13Þ

for the wave dominated by the axion component at z ¼ 0.
This is analogous to the neutrino oscillations, and we can
interpret the axion-photon conversion in an analogous
manner. Even though the magnetic field is inhomogeneous
in the neutron star magnetosphere, the conversion in such a

1The photon here has a liner polarization parallel to the
external magnetic field. The other photon polarization state
and the photon mass term due to the Cotton-Mouton effect
(which can cause the birefringence) are of little importance in our
discussions and thus will be ignored [16,39].
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  Axion-photon conversion in magnetosphere

Here, we choose the simplest  magnetic field configuration and electron density 
distribution  to clearly see the underlying physics.  



  The Adiabatic Resonant Conversion 
The resonance radius is defined at the level crossing point 
 

Near the resonance region, the axion-photon conversion is 
greatly enhanced due to large mixing angle.

nonuniform magnetic field can be studied analogously to
the MSWeffect for the neutrino oscillations in the spatially
varying matter background [41,42]. The wave initially
dominated by the axion component can maximally mix
with the photon in the resonance region in the presence of
the strong magnetic fields, and it gets adiabatically trans-
formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
We now more quantitatively discuss the conditions for

the adiabatic resonant conversion of the CDM axion into
photons.

III. THE ADIABATIC RESONANT CONVERSION
OF AXIONS INTO PHOTONS

The resonance can occur when the maximum mixing
angle is realized for m2

γðrÞ ≈m2
a. The photon mass or the

plasma mass depends on the plasma density. The realistic
modeling of the magnetosphere of a neutron star is beyond
the scope of this paper, and we simply assume a simple
dipole magnetic field with a magnitude at the neutron star
surface B 0 and the charged plasma density obeying the
Goldreich-Julian density,

B ðrÞ ¼ B 0
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r
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and
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where r0 is the neutron star radius. The resonance radius is
defined at the level crossing point m2

γðrresÞ ¼ m2
a given by
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At the resonance, jm2
γ −m2

aj ≪ gB ω andm2
1;2 ≈m2

a $ gB ω.
From the mixing angle given in Eq. (10),

sin 2θ̃ ¼
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p ; ð17Þ

where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2

γ .
We first examine the adiabatic condition for the sufficient

conversion of axions. The adiabatic resonant conversion
requires that the region in which the resonance is approx-
imately valid inside the resonance width,

δr ∼ δfjdf=drj−1res ∼ 2c1jdf=drj−1res; ð18Þ

is sufficiently bigger than the oscillation length scale at the
resonance,

losc ¼
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; ð19Þ

δr > losc hence requires
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: ð20Þ

The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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nonuniform magnetic field can be studied analogously to
the MSWeffect for the neutrino oscillations in the spatially
varying matter background [41,42]. The wave initially
dominated by the axion component can maximally mix
with the photon in the resonance region in the presence of
the strong magnetic fields, and it gets adiabatically trans-
formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
We now more quantitatively discuss the conditions for
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angle is realized for m2
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the scope of this paper, and we simply assume a simple
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surface B 0 and the charged plasma density obeying the
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where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2

γ .
We first examine the adiabatic condition for the sufficient

conversion of axions. The adiabatic resonant conversion
requires that the region in which the resonance is approx-
imately valid inside the resonance width,
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The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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nonuniform magnetic field can be studied analogously to
the MSWeffect for the neutrino oscillations in the spatially
varying matter background [41,42]. The wave initially
dominated by the axion component can maximally mix
with the photon in the resonance region in the presence of
the strong magnetic fields, and it gets adiabatically trans-
formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
We now more quantitatively discuss the conditions for
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The resonance can occur when the maximum mixing
angle is realized for m2

γðrÞ ≈m2
a. The photon mass or the

plasma mass depends on the plasma density. The realistic
modeling of the magnetosphere of a neutron star is beyond
the scope of this paper, and we simply assume a simple
dipole magnetic field with a magnitude at the neutron star
surface B 0 and the charged plasma density obeying the
Goldreich-Julian density,
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where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2
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We first examine the adiabatic condition for the sufficient

conversion of axions. The adiabatic resonant conversion
requires that the region in which the resonance is approx-
imately valid inside the resonance width,
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is sufficiently bigger than the oscillation length scale at the
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The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
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where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2
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We first examine the adiabatic condition for the sufficient

conversion of axions. The adiabatic resonant conversion
requires that the region in which the resonance is approx-
imately valid inside the resonance width,
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The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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nonuniform magnetic field can be studied analogously to
the MSWeffect for the neutrino oscillations in the spatially
varying matter background [41,42]. The wave initially
dominated by the axion component can maximally mix
with the photon in the resonance region in the presence of
the strong magnetic fields, and it gets adiabatically trans-
formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
We now more quantitatively discuss the conditions for

the adiabatic resonant conversion of the CDM axion into
photons.
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The resonance can occur when the maximum mixing
angle is realized for m2

γðrÞ ≈m2
a. The photon mass or the

plasma mass depends on the plasma density. The realistic
modeling of the magnetosphere of a neutron star is beyond
the scope of this paper, and we simply assume a simple
dipole magnetic field with a magnitude at the neutron star
surface B 0 and the charged plasma density obeying the
Goldreich-Julian density,
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At the resonance, jm2
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1;2 ≈m2
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From the mixing angle given in Eq. (10),
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where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2

γ .
We first examine the adiabatic condition for the sufficient

conversion of axions. The adiabatic resonant conversion
requires that the region in which the resonance is approx-
imately valid inside the resonance width,

δr ∼ δfjdf=drj−1res ∼ 2c1jdf=drj−1res; ð18Þ

is sufficiently bigger than the oscillation length scale at the
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The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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nonuniform magnetic field can be studied analogously to
the MSWeffect for the neutrino oscillations in the spatially
varying matter background [41,42]. The wave initially
dominated by the axion component can maximally mix
with the photon in the resonance region in the presence of
the strong magnetic fields, and it gets adiabatically trans-
formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
We now more quantitatively discuss the conditions for

the adiabatic resonant conversion of the CDM axion into
photons.
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The resonance can occur when the maximum mixing
angle is realized for m2

γðrÞ ≈m2
a. The photon mass or the

plasma mass depends on the plasma density. The realistic
modeling of the magnetosphere of a neutron star is beyond
the scope of this paper, and we simply assume a simple
dipole magnetic field with a magnitude at the neutron star
surface B 0 and the charged plasma density obeying the
Goldreich-Julian density,
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At the resonance, jm2
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where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2

γ .
We first examine the adiabatic condition for the sufficient

conversion of axions. The adiabatic resonant conversion
requires that the region in which the resonance is approx-
imately valid inside the resonance width,
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is sufficiently bigger than the oscillation length scale at the
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The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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nonuniform magnetic field can be studied analogously to
the MSWeffect for the neutrino oscillations in the spatially
varying matter background [41,42]. The wave initially
dominated by the axion component can maximally mix
with the photon in the resonance region in the presence of
the strong magnetic fields, and it gets adiabatically trans-
formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
We now more quantitatively discuss the conditions for
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modeling of the magnetosphere of a neutron star is beyond
the scope of this paper, and we simply assume a simple
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where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2

γ .
We first examine the adiabatic condition for the sufficient

conversion of axions. The adiabatic resonant conversion
requires that the region in which the resonance is approx-
imately valid inside the resonance width,
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The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
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at the neutron star surface) and hence does not affect our
discussions.2 We also require the photon effective refractive
index to be real,
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to avoid the loss of coherence in the axion-photon oscil-
lation and the attenuation of the wave propagation.

IV. THE PHOTON FLUX SEARCH BY
THE RADIO TELESCOPE

To estimate the photon flux, let us start by considering
the axion particle trajectory with the initial velocity v0 far
away from the neutron star in the Schwarzschild metric.
The impact parameter b, whose closest approach to the
neutron star is R, is given by

bðRÞ ¼ R
vescðRÞ
v0

ð1–2GM=RÞ−1=2; ð24Þ

where M is the neutron star mass and vesc ¼ ð2GM=RÞ1=2.
Recalling our discussion on the adiabatic resonance in

Sec. III (the efficient conversion can occur for m2
γðrresÞ ≈

m2
a with the resonance width Δm2

γ ≈ 4gBω), we can
estimate that the axion mass going through the efficient
axion-photon conversion region is of order [45–48]
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where ρa is the axion CDM density and we used gBω < m2
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for the parameter range of our interest. r% is defined by
m2

γðr% Þ ¼ m2
a ∓ Δm2

γ=2, and we, for a conservative esti-
mation, do not count the axions going through r < r− to
avoid the wave attenuation. The photon energy from the
axion-photon conversion is
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where the conversion probability p can be close to unity for
the adiabatic resonant conversion, and the photon flux
density can be estimated to be of order
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where d represents the distance from the neutron star to us.
The photon flux peaks around the frequency νpeak ∼ma=2π,
and Δν ∼ νpeakvdis represents the spectral line broadening
around this peak frequency due to the DM velocity
dispersion vdis.
We are interested in the detectability of this photon flux

as a result of the axion-photon resonant conversion by a
radio telescope. For this purpose, one can consider the
antenna temperature induced by the total flux density S,

T ¼ 1

2
AeffS; ð28Þ

where Aeff represents the effective collecting area of the
telescope [49]. The minimum detectable brightness temper-
ature (sensitivity) can be given by the root mean square
noise temperature of the system (which consists of the
added sky/instrumental noises of the system)

Tmin ≈
Tsysffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔBtobs

p ; ð29Þ

where ΔB is the bandwidth and tobs is the integrated
observation time. We can hence estimate, from Eqs. (28)
and (29), that the smallest detectable flux density is of order

Smin≈0.29μJy
"
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#
1=2

"
24 hrs
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#
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"
103 m2=K
Aeff=Tsys

#

ð30Þ

to be compared with the photon flux from the axion
conversion given by Eq. (27). Aeff=Tsys differs for different
experiment specifications. For instance, the SKA-mid in
the Phase 1 (SKA1) will be able to provide Aeff=Tsys ∼
2.7 × 103 assuming Aeff ∼ ð180 mÞ2 and Tsys ∼ 12 K, and
it would increase by more than an order of magnitude
assuming Aeff ∼ ð1 kmÞ2 in the Phase 2 (SKA2) [50].
There still exists a wide range of axion parameter space

of ma, g which still has not been explored, and the radio
telescope can complement the other experiments to fill in
the gap of those unexplored parameter spaces. For instance
the FAST (Five Hundred Meter Aperture Spherical Radio
Telescope) covers 70 MHz–3 GHz, the SKA (Square
Kilometre Array) covers 50 MHz–14 GHz, and the GBT
(Green Bank Telescope) covers 0.3–100 GHz, so that the
radio telescopes can probe the axion mass range of

2The strong magnetic fields can possibly affect the Thomson
scattering cross section, which however does not lead to the
violation of this coherence condition for the parameter range of
our interest [43,44].
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where d represents the distance from the neutron star to us.
The photon flux peaks around the frequency νpeak ∼ma=2π,
and Δν ∼ νpeakvdis represents the spectral line broadening
around this peak frequency due to the DM velocity
dispersion vdis.
We are interested in the detectability of this photon flux

as a result of the axion-photon resonant conversion by a
radio telescope. For this purpose, one can consider the
antenna temperature induced by the total flux density S,

T ¼ 1
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where Aeff represents the effective collecting area of the
telescope [49]. The minimum detectable brightness temper-
ature (sensitivity) can be given by the root mean square
noise temperature of the system (which consists of the
added sky/instrumental noises of the system)
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conversion given by Eq. (27). Aeff=Tsys differs for different
experiment specifications. For instance, the SKA-mid in
the Phase 1 (SKA1) will be able to provide Aeff=Tsys ∼
2.7 × 103 assuming Aeff ∼ ð180 mÞ2 and Tsys ∼ 12 K, and
it would increase by more than an order of magnitude
assuming Aeff ∼ ð1 kmÞ2 in the Phase 2 (SKA2) [50].
There still exists a wide range of axion parameter space

of ma, g which still has not been explored, and the radio
telescope can complement the other experiments to fill in
the gap of those unexplored parameter spaces. For instance
the FAST (Five Hundred Meter Aperture Spherical Radio
Telescope) covers 70 MHz–3 GHz, the SKA (Square
Kilometre Array) covers 50 MHz–14 GHz, and the GBT
(Green Bank Telescope) covers 0.3–100 GHz, so that the
radio telescopes can probe the axion mass range of

2The strong magnetic fields can possibly affect the Thomson
scattering cross section, which however does not lead to the
violation of this coherence condition for the parameter range of
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γ=2, and we, for a conservative esti-
mation, do not count the axions going through r < r− to
avoid the wave attenuation. The photon energy from the
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where d represents the distance from the neutron star to us.
The photon flux peaks around the frequency νpeak ∼ma=2π,
and Δν ∼ νpeakvdis represents the spectral line broadening
around this peak frequency due to the DM velocity
dispersion vdis.
We are interested in the detectability of this photon flux

as a result of the axion-photon resonant conversion by a
radio telescope. For this purpose, one can consider the
antenna temperature induced by the total flux density S,
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where Aeff represents the effective collecting area of the
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ature (sensitivity) can be given by the root mean square
noise temperature of the system (which consists of the
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Tmin ≈
Tsysffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔBtobs

p ; ð29Þ

where ΔB is the bandwidth and tobs is the integrated
observation time. We can hence estimate, from Eqs. (28)
and (29), that the smallest detectable flux density is of order

Smin≈0.29μJy
"
1GHz
ΔB

#
1=2

"
24 hrs
tobs

#
1=2

"
103 m2=K
Aeff=Tsys

#

ð30Þ

to be compared with the photon flux from the axion
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2.7 × 103 assuming Aeff ∼ ð180 mÞ2 and Tsys ∼ 12 K, and
it would increase by more than an order of magnitude
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There still exists a wide range of axion parameter space

of ma, g which still has not been explored, and the radio
telescope can complement the other experiments to fill in
the gap of those unexplored parameter spaces. For instance
the FAST (Five Hundred Meter Aperture Spherical Radio
Telescope) covers 70 MHz–3 GHz, the SKA (Square
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(Green Bank Telescope) covers 0.3–100 GHz, so that the
radio telescopes can probe the axion mass range of

2The strong magnetic fields can possibly affect the Thomson
scattering cross section, which however does not lead to the
violation of this coherence condition for the parameter range of
our interest [43,44].

HUANG, KADOTA, SEKIGUCHI, and TASHIRO PHYS. REV. D 97, 123001 (2018)

123001-4



Signal: For adiabatic resonant conversion, and the 
photon flux density can be estimated to be of order  

at the neutron star surface) and hence does not affect our
discussions.2 We also require the photon effective refractive
index to be real,

n21;2 ¼ 1 −
m2

1;2

ω2
¼

k21;2
ω2

> 0; ð23Þ

to avoid the loss of coherence in the axion-photon oscil-
lation and the attenuation of the wave propagation.

IV. THE PHOTON FLUX SEARCH BY
THE RADIO TELESCOPE

To estimate the photon flux, let us start by considering
the axion particle trajectory with the initial velocity v0 far
away from the neutron star in the Schwarzschild metric.
The impact parameter b, whose closest approach to the
neutron star is R, is given by

bðRÞ ¼ R
vescðRÞ
v0

ð1–2GM=RÞ−1=2; ð24Þ

where M is the neutron star mass and vesc ¼ ð2GM=RÞ1=2.
Recalling our discussion on the adiabatic resonance in

Sec. III (the efficient conversion can occur for m2
γðrresÞ ≈

m2
a with the resonance width Δm2

γ ≈ 4gBω), we can
estimate that the axion mass going through the efficient
axion-photon conversion region is of order [45–48]

dma

dt
∼πðb2ðrþ Þ−b2ðr−ÞÞρav0∼

8π
3
rresGMv−10 ρagBωm−2

a ;

ð25Þ

where ρa is the axion CDM density and we used gBω < m2
a

for the parameter range of our interest. r% is defined by
m2

γðr% Þ ¼ m2
a ∓ Δm2

γ=2, and we, for a conservative esti-
mation, do not count the axions going through r < r− to
avoid the wave attenuation. The photon energy from the
axion-photon conversion is

dE
dt

¼ pa→γ
dma

dt
ð26Þ

where the conversion probability p can be close to unity for
the adiabatic resonant conversion, and the photon flux
density can be estimated to be of order

Sγ ¼
dE=dt
4πd2Δν

∼ 4.2μJy
ð rres
100 kmÞð

M
Msun

Þð ρa
0.3 GeV=cm3Þð10

−3

v0
Þð g

1=1010 GeVÞð
BðrresÞ
1012 GÞð

ω
μeVÞð

μeV
ma

Þ2

ð d
1 kpcÞ

2ðma=2π
μeV=2πÞð

vdis
10−3

Þ;
ð27Þ

where d represents the distance from the neutron star to us.
The photon flux peaks around the frequency νpeak ∼ma=2π,
and Δν ∼ νpeakvdis represents the spectral line broadening
around this peak frequency due to the DM velocity
dispersion vdis.
We are interested in the detectability of this photon flux

as a result of the axion-photon resonant conversion by a
radio telescope. For this purpose, one can consider the
antenna temperature induced by the total flux density S,

T ¼ 1

2
AeffS; ð28Þ

where Aeff represents the effective collecting area of the
telescope [49]. The minimum detectable brightness temper-
ature (sensitivity) can be given by the root mean square
noise temperature of the system (which consists of the
added sky/instrumental noises of the system)

Tmin ≈
Tsysffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔBtobs

p ; ð29Þ

where ΔB is the bandwidth and tobs is the integrated
observation time. We can hence estimate, from Eqs. (28)
and (29), that the smallest detectable flux density is of order

Smin≈0.29μJy
"
1GHz
ΔB

#
1=2

"
24 hrs
tobs

#
1=2

"
103 m2=K
Aeff=Tsys

#

ð30Þ

to be compared with the photon flux from the axion
conversion given by Eq. (27). Aeff=Tsys differs for different
experiment specifications. For instance, the SKA-mid in
the Phase 1 (SKA1) will be able to provide Aeff=Tsys ∼
2.7 × 103 assuming Aeff ∼ ð180 mÞ2 and Tsys ∼ 12 K, and
it would increase by more than an order of magnitude
assuming Aeff ∼ ð1 kmÞ2 in the Phase 2 (SKA2) [50].
There still exists a wide range of axion parameter space

of ma, g which still has not been explored, and the radio
telescope can complement the other experiments to fill in
the gap of those unexplored parameter spaces. For instance
the FAST (Five Hundred Meter Aperture Spherical Radio
Telescope) covers 70 MHz–3 GHz, the SKA (Square
Kilometre Array) covers 50 MHz–14 GHz, and the GBT
(Green Bank Telescope) covers 0.3–100 GHz, so that the
radio telescopes can probe the axion mass range of

2The strong magnetic fields can possibly affect the Thomson
scattering cross section, which however does not lead to the
violation of this coherence condition for the parameter range of
our interest [43,44].

HUANG, KADOTA, SEKIGUCHI, and TASHIRO PHYS. REV. D 97, 123001 (2018)

123001-4

Sensitivity: The smallest detectable flux density of 
the radio telescope (SKA, FAST, GBT)  is of order  

at the neutron star surface) and hence does not affect our
discussions.2 We also require the photon effective refractive
index to be real,

n21;2 ¼ 1 −
m2

1;2

ω2
¼

k21;2
ω2

> 0; ð23Þ

to avoid the loss of coherence in the axion-photon oscil-
lation and the attenuation of the wave propagation.

IV. THE PHOTON FLUX SEARCH BY
THE RADIO TELESCOPE

To estimate the photon flux, let us start by considering
the axion particle trajectory with the initial velocity v0 far
away from the neutron star in the Schwarzschild metric.
The impact parameter b, whose closest approach to the
neutron star is R, is given by

bðRÞ ¼ R
vescðRÞ
v0

ð1–2GM=RÞ−1=2; ð24Þ

where M is the neutron star mass and vesc ¼ ð2GM=RÞ1=2.
Recalling our discussion on the adiabatic resonance in

Sec. III (the efficient conversion can occur for m2
γðrresÞ ≈

m2
a with the resonance width Δm2

γ ≈ 4gBω), we can
estimate that the axion mass going through the efficient
axion-photon conversion region is of order [45–48]

dma

dt
∼πðb2ðrþ Þ−b2ðr−ÞÞρav0∼

8π
3
rresGMv−10 ρagBωm−2

a ;

ð25Þ

where ρa is the axion CDM density and we used gBω < m2
a

for the parameter range of our interest. r% is defined by
m2

γðr% Þ ¼ m2
a ∓ Δm2

γ=2, and we, for a conservative esti-
mation, do not count the axions going through r < r− to
avoid the wave attenuation. The photon energy from the
axion-photon conversion is

dE
dt

¼ pa→γ
dma

dt
ð26Þ

where the conversion probability p can be close to unity for
the adiabatic resonant conversion, and the photon flux
density can be estimated to be of order
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dE=dt
4πd2Δν

∼ 4.2μJy
ð rres
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M
Msun
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0.3 GeV=cm3Þð10

−3
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BðrresÞ
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ω
μeVÞð
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ma

Þ2

ð d
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2ðma=2π
μeV=2πÞð

vdis
10−3

Þ;
ð27Þ

where d represents the distance from the neutron star to us.
The photon flux peaks around the frequency νpeak ∼ma=2π,
and Δν ∼ νpeakvdis represents the spectral line broadening
around this peak frequency due to the DM velocity
dispersion vdis.
We are interested in the detectability of this photon flux

as a result of the axion-photon resonant conversion by a
radio telescope. For this purpose, one can consider the
antenna temperature induced by the total flux density S,

T ¼ 1

2
AeffS; ð28Þ

where Aeff represents the effective collecting area of the
telescope [49]. The minimum detectable brightness temper-
ature (sensitivity) can be given by the root mean square
noise temperature of the system (which consists of the
added sky/instrumental noises of the system)

Tmin ≈
Tsysffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔBtobs

p ; ð29Þ

where ΔB is the bandwidth and tobs is the integrated
observation time. We can hence estimate, from Eqs. (28)
and (29), that the smallest detectable flux density is of order

Smin≈0.29μJy
"
1GHz
ΔB

#
1=2

"
24 hrs
tobs

#
1=2

"
103 m2=K
Aeff=Tsys

#

ð30Þ

to be compared with the photon flux from the axion
conversion given by Eq. (27). Aeff=Tsys differs for different
experiment specifications. For instance, the SKA-mid in
the Phase 1 (SKA1) will be able to provide Aeff=Tsys ∼
2.7 × 103 assuming Aeff ∼ ð180 mÞ2 and Tsys ∼ 12 K, and
it would increase by more than an order of magnitude
assuming Aeff ∼ ð1 kmÞ2 in the Phase 2 (SKA2) [50].
There still exists a wide range of axion parameter space

of ma, g which still has not been explored, and the radio
telescope can complement the other experiments to fill in
the gap of those unexplored parameter spaces. For instance
the FAST (Five Hundred Meter Aperture Spherical Radio
Telescope) covers 70 MHz–3 GHz, the SKA (Square
Kilometre Array) covers 50 MHz–14 GHz, and the GBT
(Green Bank Telescope) covers 0.3–100 GHz, so that the
radio telescopes can probe the axion mass range of

2The strong magnetic fields can possibly affect the Thomson
scattering cross section, which however does not lead to the
violation of this coherence condition for the parameter range of
our interest [43,44].
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magnetic profile of the neutron star, the dark matter density 
around the neutron star, the location of the neutron star…
More and more following work… 

  The Photon flux search by the radio 

0.2–400 μeV [50–52]. The current axion search experi-
mental upper bounds on the axion-photon coupling corre-
sponding to this radio telescope frequency range are
g < 6.6× 10−11 GeV−1, which comes from the helioscope
experiment and also from the energy loss rate enhancement
of the horizontal branch stars of global clusters through the
Primakoff effect [23,53]. The haloscope (microwave cav-
ity) experiments give even tighter bounds for some limited
axion mass ranges. For instance, g≲ 10−15 GeV−1 for the
axion mass of 2–3.5 μeV and g≲ 10−13GeV−1 for the
axion mass of 4.5–10 μeV [19,21,22,24,54]. The exclusive
parameter search for our study on the radio telescope probe
for axions is beyond the scope of this paper partly because
of the astrophysical uncertainties in the magnetosphere
modeling and a wide range of the possible parameters for
the neutron stars (e.g., the spin period can vary in a wide
range (Oð10−3–103Þ sec) and the magnetic field can reach
up to 1015 G) [55–63]). Dark matter properties such as the
dark matter velocity dispersion in the neighborhood of a
neutron star remain to be clarified too. The dark matter
density in the vicinity of a neutron star does not have to be
same as that in the solar neighborhood ρa ∼ 0.3GeV=cm3.
For instance, in the region where the neutron star
distribution peaks in our galaxy (∼ a few kpc from the
galactic center), the density can well be enhanced by more
than an order of magnitude (e.g., ρa ∼Oð10–100Þ×
0.3GeV=cm3) and could be even bigger ρa ∼Oð104Þ ×
0.3GeV=cm3 around the neutron star found near the
galactic center due to a dark matter spike [64–70].
For a trial parameter set, let us adopt the DM velocity and

the dispersion velocity of order v0 ∼ vdis ∼ 10−3and a factor
10 enhancement of the local DM density compared with the
value near the earth ρa ∼3GeV=cm3. Let us also assume a
neutron star of order a kpc away from us and take the DM
velocity in the resonance region of order the escape velocity
at the resonance radius. Then, for our toy magnetosphere
model with a simple dipole magnetic field profile [Eqs. (14)
and (15)], a parameter set (B 0 ¼ 1015 G, ma ¼ 50 μeV,
P¼ 10 s, g ¼ 5 × 10−11 GeV−1, r0 ¼ 10 km, M ¼
1.5Msun) satisfies the conditions for the adiabatic resonance
conditions with Sγ ∼ 0.51μJy. This can exceed the estimated
minimum required flux Smin ∼ 0.48μJy for the SKA1 and
Smin ∼ 0.016Jy for the SKA2 with 100 hour observation
time, wherewe assumed the optimized band width matching
the signal width ΔB ¼ Δν. This simple parameter set
examplewouldwork as an existence proof for themotivation
to seek a potential radio telescope probe of the adiabatic
resonant conversion of axions. Even though the further
parameter search with more detailed astrophysical model
setups is left for future work, we have a few comments
regarding the astrophysical uncertainties involved in our
estimation before concluding our work. The measurements
of the neutron star radiation in the different wavebands
have been fitted well by assuming a magnetic field profile
more complicated than a simple vacuum dipole profile

(e.g., twisted magnetosphere) and a plasma charge density
larger (e.g., a few orders of magnitude larger) than the
classical Goldreich-Julian value [62,71–77]. Such an
enhancement in the plasma density would increase the
resonance radius and affect the adiabaticity condition and
the photon flux estimation. In addition to the DM velocities
and velocity dispersions which can affect our photon flux
estimation, the galactic drift velocities of neutron stars are
also uncertain parameters whose velocity distribution does
not follow a simple Gaussian-like distribution and spans in a
wide range (typically Oð100–500Þ km=s with a significant
fraction (∼Oð10Þ%) of theneutron star populationhaving the
velocity exceeding 1000 km=s) [78]. Such variations in the
relative velocity between a neutron star and the axions can
affect the photon flux estimation too. A more detailed study
taking into account such astrophysical uncertainties and the
numerical analysis for our adiabatic resonance conversion
scenario along with the extension of our scenario to the one
including the nonadiabatic axion-photon conversion are left
for our future work.
Let us here also briefly comment on the comparison of our

scenario with the other relevant works. The conditions of the
complete conversion of axions into photons were first
studied in [17], which considered the relativistic axions
with the X-ray energy range, in contrast to the radio range in
our scenario, and hence could not realize the sufficient
adiabaticity due to the QED effect. Our CDM axion scenario
is also in contrast to the resonant conversion scenarios where
only the partial axion-photon conversion, hence with a
smaller conversion probability compared with the complete
conversion scenarios, occurs due to the insufficient adiaba-
ticity and/or coherence. Such a partial conversion scenario
would relax the bounds on the model parameters and would
be applicable for a larger sample of the neutron stars, but one
needs to require some way to compensate a smaller con-
version probability to detect the axion signals by the radio
telescopes such as a large dark matter density near the
neutron star (e.g., the dark matter density enhancement
factor of Oð1010Þ with respect to the local density in the
solar neighborhood [79]).3 How the model parameters are
affected by the astrophysical uncertainties would differ
depending on the scenarios too. For instance, for the partial
conversion scenarios, a smaller g would become viable if we
allow a bigger DM density enhancement because a bigger
dark matter density (to which the photon flux is proportional)
could compensate for a smaller conversion probability. On
the other hand, for the complete conversion scenario, in

3Reference [79] assumes the signal bandwidth broadening of
order the DM velocity squared, in contrast to ours and the other
literature which take account of a more dominant line width linear
in the velocity (e.g., from the Doppler broadening effect). This
can result in the overestimation of the signal flux by three to four
orders of magnitude and we quoted here the required dark matter
density enhancement factor bigger than their adopted value
taking account of this correction.
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0.2–400 μeV [50–52]. The current axion search experi-
mental upper bounds on the axion-photon coupling corre-
sponding to this radio telescope frequency range are
g < 6.6× 10−11 GeV−1, which comes from the helioscope
experiment and also from the energy loss rate enhancement
of the horizontal branch stars of global clusters through the
Primakoff effect [23,53]. The haloscope (microwave cav-
ity) experiments give even tighter bounds for some limited
axion mass ranges. For instance, g≲ 10−15 GeV−1 for the
axion mass of 2–3.5 μeV and g≲ 10−13GeV−1 for the
axion mass of 4.5–10 μeV [19,21,22,24,54]. The exclusive
parameter search for our study on the radio telescope probe
for axions is beyond the scope of this paper partly because
of the astrophysical uncertainties in the magnetosphere
modeling and a wide range of the possible parameters for
the neutron stars (e.g., the spin period can vary in a wide
range (Oð10−3–103Þ sec) and the magnetic field can reach
up to 1015 G) [55–63]). Dark matter properties such as the
dark matter velocity dispersion in the neighborhood of a
neutron star remain to be clarified too. The dark matter
density in the vicinity of a neutron star does not have to be
same as that in the solar neighborhood ρa ∼ 0.3GeV=cm3.
For instance, in the region where the neutron star
distribution peaks in our galaxy (∼ a few kpc from the
galactic center), the density can well be enhanced by more
than an order of magnitude (e.g., ρa ∼Oð10–100Þ×
0.3GeV=cm3) and could be even bigger ρa ∼Oð104Þ ×
0.3GeV=cm3 around the neutron star found near the
galactic center due to a dark matter spike [64–70].
For a trial parameter set, let us adopt the DM velocity and

the dispersion velocity of order v0 ∼ vdis ∼ 10−3and a factor
10 enhancement of the local DM density compared with the
value near the earth ρa ∼3GeV=cm3. Let us also assume a
neutron star of order a kpc away from us and take the DM
velocity in the resonance region of order the escape velocity
at the resonance radius. Then, for our toy magnetosphere
model with a simple dipole magnetic field profile [Eqs. (14)
and (15)], a parameter set (B 0 ¼ 1015 G, ma ¼ 50 μeV,
P¼ 10 s, g ¼ 5 × 10−11 GeV−1, r0 ¼ 10 km, M ¼
1.5Msun) satisfies the conditions for the adiabatic resonance
conditions with Sγ ∼ 0.51μJy. This can exceed the estimated
minimum required flux Smin ∼ 0.48μJy for the SKA1 and
Smin ∼ 0.016Jy for the SKA2 with 100 hour observation
time, wherewe assumed the optimized band width matching
the signal width ΔB ¼ Δν. This simple parameter set
examplewouldwork as an existence proof for themotivation
to seek a potential radio telescope probe of the adiabatic
resonant conversion of axions. Even though the further
parameter search with more detailed astrophysical model
setups is left for future work, we have a few comments
regarding the astrophysical uncertainties involved in our
estimation before concluding our work. The measurements
of the neutron star radiation in the different wavebands
have been fitted well by assuming a magnetic field profile
more complicated than a simple vacuum dipole profile

(e.g., twisted magnetosphere) and a plasma charge density
larger (e.g., a few orders of magnitude larger) than the
classical Goldreich-Julian value [62,71–77]. Such an
enhancement in the plasma density would increase the
resonance radius and affect the adiabaticity condition and
the photon flux estimation. In addition to the DM velocities
and velocity dispersions which can affect our photon flux
estimation, the galactic drift velocities of neutron stars are
also uncertain parameters whose velocity distribution does
not follow a simple Gaussian-like distribution and spans in a
wide range (typically Oð100–500Þ km=s with a significant
fraction (∼Oð10Þ%) of theneutron star populationhaving the
velocity exceeding 1000 km=s) [78]. Such variations in the
relative velocity between a neutron star and the axions can
affect the photon flux estimation too. A more detailed study
taking into account such astrophysical uncertainties and the
numerical analysis for our adiabatic resonance conversion
scenario along with the extension of our scenario to the one
including the nonadiabatic axion-photon conversion are left
for our future work.
Let us here also briefly comment on the comparison of our

scenario with the other relevant works. The conditions of the
complete conversion of axions into photons were first
studied in [17], which considered the relativistic axions
with the X-ray energy range, in contrast to the radio range in
our scenario, and hence could not realize the sufficient
adiabaticity due to the QED effect. Our CDM axion scenario
is also in contrast to the resonant conversion scenarios where
only the partial axion-photon conversion, hence with a
smaller conversion probability compared with the complete
conversion scenarios, occurs due to the insufficient adiaba-
ticity and/or coherence. Such a partial conversion scenario
would relax the bounds on the model parameters and would
be applicable for a larger sample of the neutron stars, but one
needs to require some way to compensate a smaller con-
version probability to detect the axion signals by the radio
telescopes such as a large dark matter density near the
neutron star (e.g., the dark matter density enhancement
factor of Oð1010Þ with respect to the local density in the
solar neighborhood [79]).3 How the model parameters are
affected by the astrophysical uncertainties would differ
depending on the scenarios too. For instance, for the partial
conversion scenarios, a smaller g would become viable if we
allow a bigger DM density enhancement because a bigger
dark matter density (to which the photon flux is proportional)
could compensate for a smaller conversion probability. On
the other hand, for the complete conversion scenario, in

3Reference [79] assumes the signal bandwidth broadening of
order the DM velocity squared, in contrast to ours and the other
literature which take account of a more dominant line width linear
in the velocity (e.g., from the Doppler broadening effect). This
can result in the overestimation of the signal flux by three to four
orders of magnitude and we quoted here the required dark matter
density enhancement factor bigger than their adopted value
taking account of this correction.
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0.2–400 μeV [50–52]. The current axion search experi-
mental upper bounds on the axion-photon coupling corre-
sponding to this radio telescope frequency range are
g < 6.6× 10−11 GeV−1, which comes from the helioscope
experiment and also from the energy loss rate enhancement
of the horizontal branch stars of global clusters through the
Primakoff effect [23,53]. The haloscope (microwave cav-
ity) experiments give even tighter bounds for some limited
axion mass ranges. For instance, g≲ 10−15 GeV−1 for the
axion mass of 2–3.5 μeV and g≲ 10−13GeV−1 for the
axion mass of 4.5–10 μeV [19,21,22,24,54]. The exclusive
parameter search for our study on the radio telescope probe
for axions is beyond the scope of this paper partly because
of the astrophysical uncertainties in the magnetosphere
modeling and a wide range of the possible parameters for
the neutron stars (e.g., the spin period can vary in a wide
range (Oð10−3–103Þ sec) and the magnetic field can reach
up to 1015 G) [55–63]). Dark matter properties such as the
dark matter velocity dispersion in the neighborhood of a
neutron star remain to be clarified too. The dark matter
density in the vicinity of a neutron star does not have to be
same as that in the solar neighborhood ρa ∼ 0.3GeV=cm3.
For instance, in the region where the neutron star
distribution peaks in our galaxy (∼ a few kpc from the
galactic center), the density can well be enhanced by more
than an order of magnitude (e.g., ρa ∼Oð10–100Þ×
0.3GeV=cm3) and could be even bigger ρa ∼Oð104Þ ×
0.3GeV=cm3 around the neutron star found near the
galactic center due to a dark matter spike [64–70].
For a trial parameter set, let us adopt the DM velocity and

the dispersion velocity of order v0 ∼ vdis ∼ 10−3and a factor
10 enhancement of the local DM density compared with the
value near the earth ρa ∼3GeV=cm3. Let us also assume a
neutron star of order a kpc away from us and take the DM
velocity in the resonance region of order the escape velocity
at the resonance radius. Then, for our toy magnetosphere
model with a simple dipole magnetic field profile [Eqs. (14)
and (15)], a parameter set (B 0 ¼ 1015 G, ma ¼ 50 μeV,
P¼ 10 s, g ¼ 5 × 10−11 GeV−1, r0 ¼ 10 km, M ¼
1.5Msun) satisfies the conditions for the adiabatic resonance
conditions with Sγ ∼ 0.51μJy. This can exceed the estimated
minimum required flux Smin ∼ 0.48μJy for the SKA1 and
Smin ∼ 0.016Jy for the SKA2 with 100 hour observation
time, wherewe assumed the optimized band width matching
the signal width ΔB ¼ Δν. This simple parameter set
examplewouldwork as an existence proof for themotivation
to seek a potential radio telescope probe of the adiabatic
resonant conversion of axions. Even though the further
parameter search with more detailed astrophysical model
setups is left for future work, we have a few comments
regarding the astrophysical uncertainties involved in our
estimation before concluding our work. The measurements
of the neutron star radiation in the different wavebands
have been fitted well by assuming a magnetic field profile
more complicated than a simple vacuum dipole profile

(e.g., twisted magnetosphere) and a plasma charge density
larger (e.g., a few orders of magnitude larger) than the
classical Goldreich-Julian value [62,71–77]. Such an
enhancement in the plasma density would increase the
resonance radius and affect the adiabaticity condition and
the photon flux estimation. In addition to the DM velocities
and velocity dispersions which can affect our photon flux
estimation, the galactic drift velocities of neutron stars are
also uncertain parameters whose velocity distribution does
not follow a simple Gaussian-like distribution and spans in a
wide range (typically Oð100–500Þ km=s with a significant
fraction (∼Oð10Þ%) of theneutron star populationhaving the
velocity exceeding 1000 km=s) [78]. Such variations in the
relative velocity between a neutron star and the axions can
affect the photon flux estimation too. A more detailed study
taking into account such astrophysical uncertainties and the
numerical analysis for our adiabatic resonance conversion
scenario along with the extension of our scenario to the one
including the nonadiabatic axion-photon conversion are left
for our future work.
Let us here also briefly comment on the comparison of our

scenario with the other relevant works. The conditions of the
complete conversion of axions into photons were first
studied in [17], which considered the relativistic axions
with the X-ray energy range, in contrast to the radio range in
our scenario, and hence could not realize the sufficient
adiabaticity due to the QED effect. Our CDM axion scenario
is also in contrast to the resonant conversion scenarios where
only the partial axion-photon conversion, hence with a
smaller conversion probability compared with the complete
conversion scenarios, occurs due to the insufficient adiaba-
ticity and/or coherence. Such a partial conversion scenario
would relax the bounds on the model parameters and would
be applicable for a larger sample of the neutron stars, but one
needs to require some way to compensate a smaller con-
version probability to detect the axion signals by the radio
telescopes such as a large dark matter density near the
neutron star (e.g., the dark matter density enhancement
factor of Oð1010Þ with respect to the local density in the
solar neighborhood [79]).3 How the model parameters are
affected by the astrophysical uncertainties would differ
depending on the scenarios too. For instance, for the partial
conversion scenarios, a smaller g would become viable if we
allow a bigger DM density enhancement because a bigger
dark matter density (to which the photon flux is proportional)
could compensate for a smaller conversion probability. On
the other hand, for the complete conversion scenario, in

3Reference [79] assumes the signal bandwidth broadening of
order the DM velocity squared, in contrast to ours and the other
literature which take account of a more dominant line width linear
in the velocity (e.g., from the Doppler broadening effect). This
can result in the overestimation of the signal flux by three to four
orders of magnitude and we quoted here the required dark matter
density enhancement factor bigger than their adopted value
taking account of this correction.
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0.2–400 μeV [50–52]. The current axion search experi-
mental upper bounds on the axion-photon coupling corre-
sponding to this radio telescope frequency range are
g < 6.6× 10−11 GeV−1, which comes from the helioscope
experiment and also from the energy loss rate enhancement
of the horizontal branch stars of global clusters through the
Primakoff effect [23,53]. The haloscope (microwave cav-
ity) experiments give even tighter bounds for some limited
axion mass ranges. For instance, g≲ 10−15 GeV−1 for the
axion mass of 2–3.5 μeV and g≲ 10−13GeV−1 for the
axion mass of 4.5–10 μeV [19,21,22,24,54]. The exclusive
parameter search for our study on the radio telescope probe
for axions is beyond the scope of this paper partly because
of the astrophysical uncertainties in the magnetosphere
modeling and a wide range of the possible parameters for
the neutron stars (e.g., the spin period can vary in a wide
range (Oð10−3–103Þ sec) and the magnetic field can reach
up to 1015 G) [55–63]). Dark matter properties such as the
dark matter velocity dispersion in the neighborhood of a
neutron star remain to be clarified too. The dark matter
density in the vicinity of a neutron star does not have to be
same as that in the solar neighborhood ρa ∼ 0.3GeV=cm3.
For instance, in the region where the neutron star
distribution peaks in our galaxy (∼ a few kpc from the
galactic center), the density can well be enhanced by more
than an order of magnitude (e.g., ρa ∼Oð10–100Þ×
0.3GeV=cm3) and could be even bigger ρa ∼Oð104Þ ×
0.3GeV=cm3 around the neutron star found near the
galactic center due to a dark matter spike [64–70].
For a trial parameter set, let us adopt the DM velocity and

the dispersion velocity of order v0 ∼ vdis ∼ 10−3and a factor
10 enhancement of the local DM density compared with the
value near the earth ρa ∼3GeV=cm3. Let us also assume a
neutron star of order a kpc away from us and take the DM
velocity in the resonance region of order the escape velocity
at the resonance radius. Then, for our toy magnetosphere
model with a simple dipole magnetic field profile [Eqs. (14)
and (15)], a parameter set (B 0 ¼ 1015 G, ma ¼ 50 μeV,
P¼ 10 s, g ¼ 5 × 10−11 GeV−1, r0 ¼ 10 km, M ¼
1.5Msun) satisfies the conditions for the adiabatic resonance
conditions with Sγ ∼ 0.51μJy. This can exceed the estimated
minimum required flux Smin ∼ 0.48μJy for the SKA1 and
Smin ∼ 0.016Jy for the SKA2 with 100 hour observation
time, wherewe assumed the optimized band width matching
the signal width ΔB ¼ Δν. This simple parameter set
examplewouldwork as an existence proof for themotivation
to seek a potential radio telescope probe of the adiabatic
resonant conversion of axions. Even though the further
parameter search with more detailed astrophysical model
setups is left for future work, we have a few comments
regarding the astrophysical uncertainties involved in our
estimation before concluding our work. The measurements
of the neutron star radiation in the different wavebands
have been fitted well by assuming a magnetic field profile
more complicated than a simple vacuum dipole profile

(e.g., twisted magnetosphere) and a plasma charge density
larger (e.g., a few orders of magnitude larger) than the
classical Goldreich-Julian value [62,71–77]. Such an
enhancement in the plasma density would increase the
resonance radius and affect the adiabaticity condition and
the photon flux estimation. In addition to the DM velocities
and velocity dispersions which can affect our photon flux
estimation, the galactic drift velocities of neutron stars are
also uncertain parameters whose velocity distribution does
not follow a simple Gaussian-like distribution and spans in a
wide range (typically Oð100–500Þ km=s with a significant
fraction (∼Oð10Þ%) of theneutron star populationhaving the
velocity exceeding 1000 km=s) [78]. Such variations in the
relative velocity between a neutron star and the axions can
affect the photon flux estimation too. A more detailed study
taking into account such astrophysical uncertainties and the
numerical analysis for our adiabatic resonance conversion
scenario along with the extension of our scenario to the one
including the nonadiabatic axion-photon conversion are left
for our future work.
Let us here also briefly comment on the comparison of our

scenario with the other relevant works. The conditions of the
complete conversion of axions into photons were first
studied in [17], which considered the relativistic axions
with the X-ray energy range, in contrast to the radio range in
our scenario, and hence could not realize the sufficient
adiabaticity due to the QED effect. Our CDM axion scenario
is also in contrast to the resonant conversion scenarios where
only the partial axion-photon conversion, hence with a
smaller conversion probability compared with the complete
conversion scenarios, occurs due to the insufficient adiaba-
ticity and/or coherence. Such a partial conversion scenario
would relax the bounds on the model parameters and would
be applicable for a larger sample of the neutron stars, but one
needs to require some way to compensate a smaller con-
version probability to detect the axion signals by the radio
telescopes such as a large dark matter density near the
neutron star (e.g., the dark matter density enhancement
factor of Oð1010Þ with respect to the local density in the
solar neighborhood [79]).3 How the model parameters are
affected by the astrophysical uncertainties would differ
depending on the scenarios too. For instance, for the partial
conversion scenarios, a smaller g would become viable if we
allow a bigger DM density enhancement because a bigger
dark matter density (to which the photon flux is proportional)
could compensate for a smaller conversion probability. On
the other hand, for the complete conversion scenario, in

3Reference [79] assumes the signal bandwidth broadening of
order the DM velocity squared, in contrast to ours and the other
literature which take account of a more dominant line width linear
in the velocity (e.g., from the Doppler broadening effect). This
can result in the overestimation of the signal flux by three to four
orders of magnitude and we quoted here the required dark matter
density enhancement factor bigger than their adopted value
taking account of this correction.
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g < 6.6× 10−11 GeV−1, which comes from the helioscope
experiment and also from the energy loss rate enhancement
of the horizontal branch stars of global clusters through the
Primakoff effect [23,53]. The haloscope (microwave cav-
ity) experiments give even tighter bounds for some limited
axion mass ranges. For instance, g≲ 10−15 GeV−1 for the
axion mass of 2–3.5 μeV and g≲ 10−13GeV−1 for the
axion mass of 4.5–10 μeV [19,21,22,24,54]. The exclusive
parameter search for our study on the radio telescope probe
for axions is beyond the scope of this paper partly because
of the astrophysical uncertainties in the magnetosphere
modeling and a wide range of the possible parameters for
the neutron stars (e.g., the spin period can vary in a wide
range (Oð10−3–103Þ sec) and the magnetic field can reach
up to 1015 G) [55–63]). Dark matter properties such as the
dark matter velocity dispersion in the neighborhood of a
neutron star remain to be clarified too. The dark matter
density in the vicinity of a neutron star does not have to be
same as that in the solar neighborhood ρa ∼ 0.3GeV=cm3.
For instance, in the region where the neutron star
distribution peaks in our galaxy (∼ a few kpc from the
galactic center), the density can well be enhanced by more
than an order of magnitude (e.g., ρa ∼Oð10–100Þ×
0.3GeV=cm3) and could be even bigger ρa ∼Oð104Þ ×
0.3GeV=cm3 around the neutron star found near the
galactic center due to a dark matter spike [64–70].
For a trial parameter set, let us adopt the DM velocity and

the dispersion velocity of order v0 ∼ vdis ∼ 10−3and a factor
10 enhancement of the local DM density compared with the
value near the earth ρa ∼3GeV=cm3. Let us also assume a
neutron star of order a kpc away from us and take the DM
velocity in the resonance region of order the escape velocity
at the resonance radius. Then, for our toy magnetosphere
model with a simple dipole magnetic field profile [Eqs. (14)
and (15)], a parameter set (B 0 ¼ 1015 G, ma ¼ 50 μeV,
P¼ 10 s, g ¼ 5 × 10−11 GeV−1, r0 ¼ 10 km, M ¼
1.5Msun) satisfies the conditions for the adiabatic resonance
conditions with Sγ ∼ 0.51μJy. This can exceed the estimated
minimum required flux Smin ∼ 0.48μJy for the SKA1 and
Smin ∼ 0.016Jy for the SKA2 with 100 hour observation
time, wherewe assumed the optimized band width matching
the signal width ΔB ¼ Δν. This simple parameter set
examplewouldwork as an existence proof for themotivation
to seek a potential radio telescope probe of the adiabatic
resonant conversion of axions. Even though the further
parameter search with more detailed astrophysical model
setups is left for future work, we have a few comments
regarding the astrophysical uncertainties involved in our
estimation before concluding our work. The measurements
of the neutron star radiation in the different wavebands
have been fitted well by assuming a magnetic field profile
more complicated than a simple vacuum dipole profile

(e.g., twisted magnetosphere) and a plasma charge density
larger (e.g., a few orders of magnitude larger) than the
classical Goldreich-Julian value [62,71–77]. Such an
enhancement in the plasma density would increase the
resonance radius and affect the adiabaticity condition and
the photon flux estimation. In addition to the DM velocities
and velocity dispersions which can affect our photon flux
estimation, the galactic drift velocities of neutron stars are
also uncertain parameters whose velocity distribution does
not follow a simple Gaussian-like distribution and spans in a
wide range (typically Oð100–500Þ km=s with a significant
fraction (∼Oð10Þ%) of theneutron star populationhaving the
velocity exceeding 1000 km=s) [78]. Such variations in the
relative velocity between a neutron star and the axions can
affect the photon flux estimation too. A more detailed study
taking into account such astrophysical uncertainties and the
numerical analysis for our adiabatic resonance conversion
scenario along with the extension of our scenario to the one
including the nonadiabatic axion-photon conversion are left
for our future work.
Let us here also briefly comment on the comparison of our

scenario with the other relevant works. The conditions of the
complete conversion of axions into photons were first
studied in [17], which considered the relativistic axions
with the X-ray energy range, in contrast to the radio range in
our scenario, and hence could not realize the sufficient
adiabaticity due to the QED effect. Our CDM axion scenario
is also in contrast to the resonant conversion scenarios where
only the partial axion-photon conversion, hence with a
smaller conversion probability compared with the complete
conversion scenarios, occurs due to the insufficient adiaba-
ticity and/or coherence. Such a partial conversion scenario
would relax the bounds on the model parameters and would
be applicable for a larger sample of the neutron stars, but one
needs to require some way to compensate a smaller con-
version probability to detect the axion signals by the radio
telescopes such as a large dark matter density near the
neutron star (e.g., the dark matter density enhancement
factor of Oð1010Þ with respect to the local density in the
solar neighborhood [79]).3 How the model parameters are
affected by the astrophysical uncertainties would differ
depending on the scenarios too. For instance, for the partial
conversion scenarios, a smaller g would become viable if we
allow a bigger DM density enhancement because a bigger
dark matter density (to which the photon flux is proportional)
could compensate for a smaller conversion probability. On
the other hand, for the complete conversion scenario, in

3Reference [79] assumes the signal bandwidth broadening of
order the DM velocity squared, in contrast to ours and the other
literature which take account of a more dominant line width linear
in the velocity (e.g., from the Doppler broadening effect). This
can result in the overestimation of the signal flux by three to four
orders of magnitude and we quoted here the required dark matter
density enhancement factor bigger than their adopted value
taking account of this correction.
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0.2–400 μeV [50–52]. The current axion search experi-
mental upper bounds on the axion-photon coupling corre-
sponding to this radio telescope frequency range are
g < 6.6× 10−11 GeV−1, which comes from the helioscope
experiment and also from the energy loss rate enhancement
of the horizontal branch stars of global clusters through the
Primakoff effect [23,53]. The haloscope (microwave cav-
ity) experiments give even tighter bounds for some limited
axion mass ranges. For instance, g≲ 10−15 GeV−1 for the
axion mass of 2–3.5 μeV and g≲ 10−13GeV−1 for the
axion mass of 4.5–10 μeV [19,21,22,24,54]. The exclusive
parameter search for our study on the radio telescope probe
for axions is beyond the scope of this paper partly because
of the astrophysical uncertainties in the magnetosphere
modeling and a wide range of the possible parameters for
the neutron stars (e.g., the spin period can vary in a wide
range (Oð10−3–103Þ sec) and the magnetic field can reach
up to 1015 G) [55–63]). Dark matter properties such as the
dark matter velocity dispersion in the neighborhood of a
neutron star remain to be clarified too. The dark matter
density in the vicinity of a neutron star does not have to be
same as that in the solar neighborhood ρa ∼ 0.3GeV=cm3.
For instance, in the region where the neutron star
distribution peaks in our galaxy (∼ a few kpc from the
galactic center), the density can well be enhanced by more
than an order of magnitude (e.g., ρa ∼Oð10–100Þ×
0.3GeV=cm3) and could be even bigger ρa ∼Oð104Þ ×
0.3GeV=cm3 around the neutron star found near the
galactic center due to a dark matter spike [64–70].
For a trial parameter set, let us adopt the DM velocity and

the dispersion velocity of order v0 ∼ vdis ∼ 10−3and a factor
10 enhancement of the local DM density compared with the
value near the earth ρa ∼3GeV=cm3. Let us also assume a
neutron star of order a kpc away from us and take the DM
velocity in the resonance region of order the escape velocity
at the resonance radius. Then, for our toy magnetosphere
model with a simple dipole magnetic field profile [Eqs. (14)
and (15)], a parameter set (B 0 ¼ 1015 G, ma ¼ 50 μeV,
P¼ 10 s, g ¼ 5 × 10−11 GeV−1, r0 ¼ 10 km, M ¼
1.5Msun) satisfies the conditions for the adiabatic resonance
conditions with Sγ ∼ 0.51μJy. This can exceed the estimated
minimum required flux Smin ∼ 0.48μJy for the SKA1 and
Smin ∼ 0.016Jy for the SKA2 with 100 hour observation
time, wherewe assumed the optimized band width matching
the signal width ΔB ¼ Δν. This simple parameter set
examplewouldwork as an existence proof for themotivation
to seek a potential radio telescope probe of the adiabatic
resonant conversion of axions. Even though the further
parameter search with more detailed astrophysical model
setups is left for future work, we have a few comments
regarding the astrophysical uncertainties involved in our
estimation before concluding our work. The measurements
of the neutron star radiation in the different wavebands
have been fitted well by assuming a magnetic field profile
more complicated than a simple vacuum dipole profile

(e.g., twisted magnetosphere) and a plasma charge density
larger (e.g., a few orders of magnitude larger) than the
classical Goldreich-Julian value [62,71–77]. Such an
enhancement in the plasma density would increase the
resonance radius and affect the adiabaticity condition and
the photon flux estimation. In addition to the DM velocities
and velocity dispersions which can affect our photon flux
estimation, the galactic drift velocities of neutron stars are
also uncertain parameters whose velocity distribution does
not follow a simple Gaussian-like distribution and spans in a
wide range (typically Oð100–500Þ km=s with a significant
fraction (∼Oð10Þ%) of theneutron star populationhaving the
velocity exceeding 1000 km=s) [78]. Such variations in the
relative velocity between a neutron star and the axions can
affect the photon flux estimation too. A more detailed study
taking into account such astrophysical uncertainties and the
numerical analysis for our adiabatic resonance conversion
scenario along with the extension of our scenario to the one
including the nonadiabatic axion-photon conversion are left
for our future work.
Let us here also briefly comment on the comparison of our

scenario with the other relevant works. The conditions of the
complete conversion of axions into photons were first
studied in [17], which considered the relativistic axions
with the X-ray energy range, in contrast to the radio range in
our scenario, and hence could not realize the sufficient
adiabaticity due to the QED effect. Our CDM axion scenario
is also in contrast to the resonant conversion scenarios where
only the partial axion-photon conversion, hence with a
smaller conversion probability compared with the complete
conversion scenarios, occurs due to the insufficient adiaba-
ticity and/or coherence. Such a partial conversion scenario
would relax the bounds on the model parameters and would
be applicable for a larger sample of the neutron stars, but one
needs to require some way to compensate a smaller con-
version probability to detect the axion signals by the radio
telescopes such as a large dark matter density near the
neutron star (e.g., the dark matter density enhancement
factor of Oð1010Þ with respect to the local density in the
solar neighborhood [79]).3 How the model parameters are
affected by the astrophysical uncertainties would differ
depending on the scenarios too. For instance, for the partial
conversion scenarios, a smaller g would become viable if we
allow a bigger DM density enhancement because a bigger
dark matter density (to which the photon flux is proportional)
could compensate for a smaller conversion probability. On
the other hand, for the complete conversion scenario, in

3Reference [79] assumes the signal bandwidth broadening of
order the DM velocity squared, in contrast to ours and the other
literature which take account of a more dominant line width linear
in the velocity (e.g., from the Doppler broadening effect). This
can result in the overestimation of the signal flux by three to four
orders of magnitude and we quoted here the required dark matter
density enhancement factor bigger than their adopted value
taking account of this correction.
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convert to photon

at the neutron star surface) and hence does not affect our
discussions.2 We also require the photon effective refractive
index to be real,

n21;2 ¼ 1 −
m2

1;2

ω2
¼

k21;2
ω2

> 0; ð23Þ

to avoid the loss of coherence in the axion-photon oscil-
lation and the attenuation of the wave propagation.

IV. THE PHOTON FLUX SEARCH BY
THE RADIO TELESCOPE

To estimate the photon flux, let us start by considering
the axion particle trajectory with the initial velocity v0 far
away from the neutron star in the Schwarzschild metric.
The impact parameter b, whose closest approach to the
neutron star is R, is given by

bðRÞ ¼ R
vescðRÞ
v0

ð1–2GM=RÞ−1=2; ð24Þ

where M is the neutron star mass and vesc ¼ ð2GM=RÞ1=2.
Recalling our discussion on the adiabatic resonance in

Sec. III (the efficient conversion can occur for m2
γðrresÞ ≈

m2
a with the resonance width Δm2

γ ≈ 4gBω), we can
estimate that the axion mass going through the efficient
axion-photon conversion region is of order [45–48]

dma

dt
∼πðb2ðrþ Þ−b2ðr−ÞÞρav0∼

8π
3
rresGMv−10 ρagBωm−2

a ;

ð25Þ

where ρa is the axion CDM density and we used gBω < m2
a

for the parameter range of our interest. r% is defined by
m2

γðr% Þ ¼ m2
a ∓ Δm2

γ=2, and we, for a conservative esti-
mation, do not count the axions going through r < r− to
avoid the wave attenuation. The photon energy from the
axion-photon conversion is

dE
dt

¼ pa→γ
dma

dt
ð26Þ

where the conversion probability p can be close to unity for
the adiabatic resonant conversion, and the photon flux
density can be estimated to be of order

Sγ ¼
dE=dt
4πd2Δν

∼ 4.2μJy
ð rres
100 kmÞð

M
Msun

Þð ρa
0.3 GeV=cm3Þð10

−3

v0
Þð g

1=1010 GeVÞð
BðrresÞ
1012 GÞð

ω
μeVÞð

μeV
ma

Þ2

ð d
1 kpcÞ

2ðma=2π
μeV=2πÞð

vdis
10−3

Þ;
ð27Þ

where d represents the distance from the neutron star to us.
The photon flux peaks around the frequency νpeak ∼ma=2π,
and Δν ∼ νpeakvdis represents the spectral line broadening
around this peak frequency due to the DM velocity
dispersion vdis.
We are interested in the detectability of this photon flux

as a result of the axion-photon resonant conversion by a
radio telescope. For this purpose, one can consider the
antenna temperature induced by the total flux density S,

T ¼ 1

2
AeffS; ð28Þ

where Aeff represents the effective collecting area of the
telescope [49]. The minimum detectable brightness temper-
ature (sensitivity) can be given by the root mean square
noise temperature of the system (which consists of the
added sky/instrumental noises of the system)

Tmin ≈
Tsysffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔBtobs

p ; ð29Þ

where ΔB is the bandwidth and tobs is the integrated
observation time. We can hence estimate, from Eqs. (28)
and (29), that the smallest detectable flux density is of order

Smin≈0.29μJy
"
1GHz
ΔB

#
1=2

"
24 hrs
tobs

#
1=2

"
103 m2=K
Aeff=Tsys

#

ð30Þ

to be compared with the photon flux from the axion
conversion given by Eq. (27). Aeff=Tsys differs for different
experiment specifications. For instance, the SKA-mid in
the Phase 1 (SKA1) will be able to provide Aeff=Tsys ∼
2.7 × 103 assuming Aeff ∼ ð180 mÞ2 and Tsys ∼ 12 K, and
it would increase by more than an order of magnitude
assuming Aeff ∼ ð1 kmÞ2 in the Phase 2 (SKA2) [50].
There still exists a wide range of axion parameter space

of ma, g which still has not been explored, and the radio
telescope can complement the other experiments to fill in
the gap of those unexplored parameter spaces. For instance
the FAST (Five Hundred Meter Aperture Spherical Radio
Telescope) covers 70 MHz–3 GHz, the SKA (Square
Kilometre Array) covers 50 MHz–14 GHz, and the GBT
(Green Bank Telescope) covers 0.3–100 GHz, so that the
radio telescopes can probe the axion mass range of

2The strong magnetic fields can possibly affect the Thomson
scattering cross section, which however does not lead to the
violation of this coherence condition for the parameter range of
our interest [43,44].
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I. INTRODUCTION

Since the proposal of the Peccei-Quinn (PQ) mechanism
as an elegant solution of the QCD strongCP problem, there
have been many attempts to search for the axion which
naturally arises as a pseudoscalar particle of the PQ
symmetry [1–7]. Besides the QCD axions, more generally,
the axion-like particles (ALPs) also have been widely
discussed and can commonly arise in the string theory
[8]. The possibility for these axions/ALPs to be the CDM
candidates also gives a tantalizing motivation to search for
them [9–12]. It is intriguing that the axion CDMmass range
μeV–meV (corresponding to the frequency 0.1–100 GHz)
which is motivated from the QCD axion as a CDM
candidate turns out to overlap with the frequency range
which the radio telescope can probe [13–15].

We seek the radio telescope probe of CDM axions
through their adiabatic resonant conversion into photons
in the astrophysically sourced strong magnetic fields such
as those in the vicinity of the neutron stars/magnetars. This
is in stark contrast to the relativistic axion with the X-ray
energy for which it has been claimed that the adiabatic
resonant conversion cannot be realized in the strongly
magnetized plasma, such as the neutron star magneto-
sphere, due to the significant vacuum polarization contri-
bution to the photon dispersion relation [16,17].
The axion and photon can convert to each other in

presence of the magnetic fields through the Primakoff
process, and many attempts have been made to seek the

axions using a powerful magnet in the laboratory to result
in the tight bounds on the axion mass and its coupling to
photons [18–24]. Many studies also have been done for the
axion search using the astrophysically sourced magnetic
fields such as the intergalactic magnetic fields and stellar
magnetic fields [16,17,25–30]. The use of actual astro-
physical data from the gamma ray, X-ray, optical, and radio
telescopes also helped in reducing the viable axion param-
eter space, but many of those analyses assumed the
relativistic axion converting into a photon or the CDM
axion decaying into two photons [31–34]. The potential
radio telescope probe of the nonrelativistic axion converted
into the photon in the presence of the astrophysical
magnetic fields has been recently studied assuming the
nonresonant conversion but little study has been done on
the resonant conversion for the radio surveys [35–38]. Our
study on the adiabatic resonant conversion of the CDM
axion would complement those previous studies for the
further radio telescope exploration of the axion search.
Section II outlines the setup of our study, and Sec. III
examines the conditions for the adiabatic resonant con-
version of axions into photons. Section IV discusses the
detectability of the photon flux by a radio telescope as a
result of such an efficient axion-photon conversion.

II. THE AXION-PHOTON WAVE PROPAGATION
IN THE MAGNETIC FIELDS

The Lagrangian for the axion-photon system in the
presence of the magnetic fields relevant for the magnetized
astrophysical sources such as the neutron stars is

L ¼ −
1

4
F μνF μν þ 1

2
ð∂μa∂μa −m2

aa2Þ þ Lint þ LQED; ð1Þ

where a is the axion with the mass ma, and F μν is the
electromagnetic field tensor. The pseudoscalar axion can
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  Powerful LISA experiments
➢The true shape of  Higgs potential (Exp: 

complementary check with CEPC) 
➢ Baryon asymmetry of the universe (baryogenesis) 
➢Gravitational wave (Exp:LISA 2034) 
➢Dark Matter  blind spots  Phys.Rev. D98 (2018) no.9, 095022, 

FPH,Jianghao Yu 

➢ Asymmetry dark matter 
(The cosmic phase transition with Q-balls production mechanism can explain 
the baryogenesis and DM simultaneously, where constraints on DM masses 
and reverse dilution are significantly relaxed.  
FPH, Chong Sheng Li,  Phys.Rev. D96 (2017) no.9, 095028)

 LISA in synergy with CEPC helps to  explore the 
evolution history of the universe at several hundred GeV 
temperature, dark matter and baryogenesis.



 
Particle approach 
we can build more powerful 
colliders, such as planned 

Current  particle collider has no ability to unravel the true 
potential of the Higgs boson, we need new  experiments. 

Wave approach 
GW detectors can test  Higgs  
potential as complementary 
approach. (LISA launch 2034) 

Relate by 
EW phase 
transition/
baryogenesis 

Double test on 
the Higgs 
potential and 
baryogenesis



EW baryogenesis in a nutshell

A long standing problem in  particle 
cosmology is the origin of baryon 
asymmetry of the universe (BAU).

(CMB, BBN) 

After the discovery of the Higgs 
boson by LHC and gravitational 

waves (GW) by aLIGO,  EW 
baryogenesis becomes a timely and 
testable scenario for explaining the 

BAU.

I. INTRODUCTION

Electroweak (EW) baryogenesis becomes a promising and testable mechanism at both

particle colliders and gravitational wave (GW) detectors to explain the observed baryon

asymmetry of the Universe (BAU), especially after the discovery of the 125 GeV Higgs

boson at the LHC [1, 2] and the first detection of GWs by Advanced LIGO [3]. The long-

standing puzzle of BAU in particle cosmology is quantified by the baryon-to-photon ratio

⌘B = nB/n� = 5.8�6.6⇥10�10 [4] at 95% confidence level (C.L.), which is determined from

the data of the cosmic microwave background radiation or the big bang nucleosynthesis. It is

well known that to generate the observed BAU, Sakharov’s three conditions (baryon number

violation, C and CP violation, and departure from thermal equilibrium or CPT violation) [5]

need to be satisfied, and various baryogenesis mechanisms have been proposed [6]. Among

them, EW baryogenesis [7–9] may potentially relate the nature of the Higgs boson and phase

transition GWs. An important ingredient for successful EW baryogenesis is the existence

of a strong first-order phase transition (SFOPT) which can achieve departure from thermal

equilibrium. The lattice simulation shows that the 125 GeV Higgs boson is too heavy

for an e�cient SFOPT [9], nevertheless, there exist already in the literature four types of

extensions of the standard model (SM) Higgs sector to produce a SFOPT [10]. Another

important ingredient is su�cient source of CP violation, which is too weak in the SM.

One needs to introduce a large enough CP violation, which also needs to escape the severe

constraints from the electric dipole moment (EDM) measurement.

Thus, in this work, we study the dynamic source of CP violation1, which depends on the

cosmological evolution of a scalar field. For example, this can be realized by the two-step

phase transition, where a su�cient CP violation and SFOPT can be satisfied simultaneously

to make the EW baryogenesis work. The studied scenario could explain the observed BAU

while satisfying all the constraints from EDM measurement and collider data.

As a well-studied example, the SM is extended with a real scalar field S and a dimension-

five operator yt
⌘

⇤SQ̄L�̃tR + H.c. to provide the SFOPT and su�cient CP violation for

EW baryogenesis, which was firstly proposed in Refs. [15, 16]. This dimension-five operator

actually appears in many composite models and this source of CP violation for BAU evolves

1 In recent years, inspiring works on the dynamical CP violation appeared in Refs. [11–14].
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EW baryogenesis:
SM technically
 has all the three 
elements for
baryogenesis , 
(Baryon violation,
C and CP violation,
Departure from 
thermal equilibrium 
or CPT violation)
but not  enough.

! B violation from anomaly in B+L 
current. 

! CKM matrix, but too weak. 
! strong first-order phase transition 

(SFOPT) with expanding Higgs 
Bubble wall. 

D. E. Morrissey and M. J. Ramsey-Musolf,  
New J. Phys. 14, 125003 (2012).

EW baryogenesis:



phase transition GW in a nutshell

E. Witten, Phys. Rev. D 
30, 272 (1984) 
C. J. Hogan, Phys. 
Lett. B 133, 172 (1983);  
M. Kamionkowski, A. 
Kosowsky and M. S. 
Turner, Phys. Rev. D 
49, 2837 (1994)) 
EW phase 
transition GW  
becomes  more 
interesting and 
realistic after the 
discovery of  
Higgs by LHC and 
GW    by LIGO.

Strong First-order  phase transition (FOPT) can 
drive the plasma of  the early universe out of 
thermal equilibrium, and  bubbles nucleate 
during it, which will  produce GW.



➢Bubble collision: well-known source  from 
1983 

➢Turbulence in the plasma fluid: a fraction 
of the bubble wall energy  converted into turbulence. 

➢Sound wave in the plasma fluid: after 
the collision a fraction of bubble wall energy converted 
into motion of the fluid (and is only later dissipated). 
New mechanism of GW：sound wave  

      Mark Hindmarsh, et al., PRL 112, 041301 (2014); 

Mechanisms of GW during phase 
transition



How to alleviate this tension for successful baryogenesis?

Large enough  
CP-violating source 

for successful  
EW baryogenesis 

pretty small  
CP-violation  

to avoid strong EDM  
constraints

Strong tension in most cases

Current EDM data put severe constraints on many baryogenesis 
models. For example, the ACME Collaboration’s new result, i.e. |de| < 
1.1× 10−29 cm · e at 90% C.L. (Nature vol.562,357,18th Oct.2018) , has 
ruled out a large portion of the CP violation parameter space for many 
baryogenesis models. 

Sufficient CP-violation for baryogenesis v.s. 
electric dipole moment (EDM) measurement

• contribution to electron EDM

top-quark loop. Considering the one-loop correction, the
(squared) mass matrix terms of the scalar fields can be
written as

Lmass ¼ −
1

2

!
S H

"! m 2
S;tree þ Δm 2

S Δm 2
HS

Δm 2
HS m 2

H;tree þ Δm 2
H

"

×
!

S

H

"
: ð18Þ

Those corrections are

Δm 2
H ¼ 3m 4

t

4π2v2
; Δm 2

HS ¼ a
3m 4

t

2π2Λv
;

Δm 2
S ¼ ða2 − b2Þ 3m 4

t

4π2Λ2
: ð19Þ

The calculation details can also be found in the Appendix.
This mass matrix can be diagonalized by a rotation
matrix O:

O
! m 2

S;tree þ Δm 2
S Δm 2

HS

Δm 2
HS m 2

H;tree þ Δm 2
H

"
OT

¼
!m 2

S;phy 0

0 m 2
H;phy

"
: ð20Þ

Here m H;phy ¼ 125 GeV is the mass of the SM-like Higgs
boson observed by the LHC, and the physical mass
eigenstates are the mixing of the scalar fields H and S:

Sphy ¼ O11SþO12H;

Hphy ¼ O21SþO22H: ð21Þ

From now on, we neglect the subscript “phy,” and all the
fields and masses are physical by default.

A. Electric dipole moment experiments

Current EDM experiments put severe constraints on
many baryogenesis models. For example, the ACME
Collaboration’s new result, i.e., jdej< 8.7 × 10−29 cm · e
at 90% C.L. [68], has ruled out a large portion of the CP
violation parameter space for many baryogenesis models.
However, in this dynamical CP violation baryogenesis
scenario, the strong constraints from the recent electron
EDM experiments can be greatly relaxed, since S does not
acquire a VEV at zero temperature; thus, the mixing of S
and the Higgs boson and the CP violation interaction of the
top Yukawa is prevented at the tree level; i.e., the two-loop
Barr-Zee contributions to the EDM come only from the
loop-induced mixing effects. For example, if one considers
hSi ¼ 100 GeV, then current electron EDM measurements
can exclude the parameter space with Λ < 10 TeV [69].
This difference can be analytically understood by loop

order estimation. In those models with hSi ≠ 0, the CP
violation term contributes to electron EDM through the
Barr-Zee diagram at the two-loop level. While in our case
with hSi ¼ 0, this CP violation term can contribute to
EDM only at the three-loop level, because the mixing of H
and S is induced at the one-loop level. Thus, in our case the
constraints from the EDM are weaker than the collider
constraints (discussed in the next section), which is differ-
ent from the usual EW baryogenesis case where the EDM
constraints are much stronger than the collide constraints.
Because of the loop-induced mixing effects, the two-loop
Barr-Zee contribution to EDM is suppressed and can be
expressed as [69–71]

d2-loope ¼ e
3π2
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The numerical results are shown in Fig. 3, where the
region below the dotted blue lines is excluded by the EDM
experiments.
We also consider constraints from neutron EDM [72–74]

and mercury EDM [75,76]. But, through our calculation,
we find that limits from current neutron and mercury EDM
experiments are weaker than electron EDM. However, the
expected future neutron EDM measurement [77] with a
much enhanced precision could have the capability to
detect this type of CP violation.

B. Collider direct search and Higgs data

Production and decay patterns of both the Higgs boson
and S particle are modified by the loop-induced mixing;
see Fig. 2 for an illustration. In Fig. 2, the mass gap around
125 GeV comes from the mass mixing term Δm 2

HS ¼
a 3m 4

t
2π2Λv, which is fixed by Λ rather than a free parameter.

This feature is shown more clearly in Fig. 3, where the mass
region between black dashed lines is forbidden by this
mass mixing term. Fortran code EHDECAY [78–81] is used
here to do precise calculations. Figure 2 shows that the
branching ratios of S is quite SM-like near the Higgs mass
due to a large mixing with H. While in the region away
from 125 GeV, i.e., the region with a smaller mixing, top-
loop-induced γγ and gg channels are enhanced. Our
scenario get constraints from the SM and non-SM Higgs
searches in various channels at LEP, Tevatron, and LHC
experiments and the observed 125 GeV Higgs signal
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FIG. 2: Shaded region: for f/b = 500GeV, mh = 120GeV
and ms = 80, 130GeV (upper and lower plots), the ∆Θt

achieved for a given vc/Tc in the Z2-symmetric case (a
tiny explicit breaking is assumed, see Section V). The
black lines (dotted, dot-dashed, dashed, solid, double dashed-
dotted) correspond to explicit examples with fixed λm =
0.25, 0.5, 0.75, 1, 1.5, respectively. Points on the red lines
match the observed baryon asymmetry (solid) or 1.5 (dot-
ted), 0.75 (dashed) times that value. The vertical line marks
vc/Tc = 1, below which the asymmetry would be erased by
active sphalerons.

fulfilled for natural values of the parameters.
We close this Section with a comparison of our

EWBG scenario with previous studies of EWBG in non-
supersymmetric models, such as the two-Higgs doublet
model [48, 53] or the SM with a low cut-off [29–32]. In
the former, CP violation arises already at the level of
renormalizable operators in the Higgs potential, through
a complex phase between the two Higgs VEVs. Very
strong phase transitions (induced by tree-level barriers)
are not possible in that context since, contrary to the
case with a singlet, the second Higgs doublet cannot ac-
quire a VEV prior to the EWPhT by definition. (To
circumvent this problem, ref. [54] studies a 2HDM with
an additional singlet: the two Higgs doublets violate CP ;
the singlet strengthens the EWPhT.) Although the non-
supersymmetric 2HDM does not address the hierarchy
problem, it is worth noting that it can also arise as the

low-energy limit of composite Higgs models [34].
The behaviour at finite temperature of other scenar-

ios that address the hierarchy problem but lead only
to a light single Higgs, such as the Minimal Composite
Higgs [22] or Little Higgs models, have been also ana-
lyzed. Refs. [31] studied the temperature behaviour of a
Higgs that arises as the PNGB of a broken global symme-
try,3 parametrizing the deviations from the SM through
effective operators. A strong EWPhT can result in this
setting from the dimension-six operator h6, which stabi-
lizes a Higgs potential with negative quartic coupling, as
discussed in [29, 30]. This creates a large tree-level bar-
rier but the reliability of the effective-theory description
is not then obvious. Different dimension-six operators are
responsible for sourcing CP violation [31, 32], in a man-
ner similar to our eq. (7), and for generating a complex
mass for the top quark: mt ∼ yt(vh+iv3h/Λ

2). Compared
to the model proposed here, these operators (which would
arise also in our model, in the limit of a heavy singlet)
are dimension-six and hence generally smaller than the
ones involving the singlet.

IV. ELECTRIC DIPOLE MOMENTS AND
OTHER CONSTRAINTS

The presence of a scalar that mixes with the Higgs and
has pseudoscalar couplings to fermions induces an elec-
tric dipole moment (EDM) for the electron and for the
neutron. The electron EDM receives the largest contribu-
tion from the two-loop Feynman diagram [56] of Figure 3,
where the electron flips its chirality by coupling to the

s

h

t t
t

e e e
FIG. 3: Diagram illustrating the largest contribution to the
electron EDM: the dashed line indicates a Higgs that mixes
with the singlet, which then couples with the top.

3 At even higher temperatures, the same mechanism that cuts off
quadratic divergences in the Higgs potential also affects its finite
temperature corrections and could lead to non-restoration of the
EW symmetry [55].

|de| ⇠< 1⇥ 10�29 (ACME 2018)

2-loop Barr-Zee contribution to EDM



Answer:     Assume the CP violating coupling evolves with the 
universe. In the early universe, CP violation is large enough 
for successful baryogenesis. When the universe evolves to 
today, the CP violation becomes negligible !

Large enough  
CP-violating source 
in the early universe 

for successful  
EW baryogenesis 

Negligible   
CP-violating source 

at current time 
to avoid strong EDM  

constraints
Dynamical/cosmological evolve 

alleviate by assuming the CP-violating source  
is time dependent

Question:  How to alleviate the tension between sufficient CP violation 
for successful electroweak baryogenesis and strong constraints from 
current electric dipole moment measurements ?
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First, we study the following case as a representative example:

Firstly, a second-order phase transition happens, the scalar field S acquire a  
vacuum exception value (VEV) and the dim-5 operator generates a sizable 
CP-violating Yukawa coupling for successful baryogenesis.  

Secondly,  SFOPT occurs when vacuum transits from (0,<S>) to (<Φ>,0).   
   1. During the SFOPT,  detectable GW can be produced. 
   2. After the SFOPT, the VEV of S vanishes  at tree-level which avoids the 
strong EDM constraints,  and produces abundant collider phenomenology at 
the LHC and future lepton colliders, such as CEPC, ILC, FCC-ee. 
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More generally, we can assume that the top-quark Yukawa coupling depends on a scalar field

or its VEV, which changes during the cosmological evolution. For the phase transition case,

the CP -violating top-Yukawa coupling simply depends on the phase transition dynamics.

We take the n = 1 as a simple but representative example to show how it gives successful

baryogenesis and how it is detected with the interplay of collider experiments and gravita-

tional wave detectors. The corresponding e↵ective Lagrangian [15, 16, 38] can be written

as:

L = LSM � yt
⌘

⇤
SQ̄L�̃tR +H.c +

1

2
@µS@

µS +
1

2
µ2S2 � 1

4
�S4 � 1

2
S2(�†�). (2)

Based on this Lagrangian, we study the collider constraints, predictions, GW signals and

EDM constraints in detail. For simplicity, we choose the default values as a = b = 1, namely,

⌘ = 1+ i. We can, of course rescale ⌘ and ⇤ simultaneously to keep the e↵ective field theory

valid up to the interested energy scales. It is not necessary to consider the domain wall

problem here as shown in Refs. [15, 39]. The coe�cients µ2, �, and  are assumed to be

positive in this work. It worth noticing that we just use the same Lagrangian in Refs. [15, 16]

to realize the two-step phase transition and do not consider other possible operators, which

may make the two-step phase transition di�cult to realize. If we neglect the dimension-five

operator, there is a Z2 symmetry in the potential, which makes the two-step phase transition

more available.

For the above e↵ective Lagrangian, a second-order and first-order phase transition could

occur in orders. First, a second-order phase transition happens, the scalar field S acquires

a VEV, and the dimension-five operator generates a sizable CP -violating top-Yukawa cou-

pling, which provides the source of CP violation needed for BAU. Second, a SFOPT oc-

curs when the vacuum transits from (0, hSi) to (h�i, 0). After the two-step phase tran-

sition,3 the VEV of S vanishes at the tree level, which naturally avoids the electron and

neutron EDM constraints, and the dimension-five operator induces the interaction term

�mt

⇤ (aSt̄t + ibSt̄�5t), which produces abundant collider phenomenology at the LHC and

future lepton colliders, such as CEPC, ILC, and FCC-ee.

It is worth noticing that the dimension-five e↵ective operator yt
⌘

⇤SQ̄L�̃tR is present

as well in some NP models [51–53], especially many composite Higgs models [52, 53]. For

3 There are extensive studies on the two-step phase transition in the models of an extended Higgs sector

with singlet scalars as in Refs. [40–50].

5

The singlet and the dim-5 operator can come from many types composite Higgs models              
 arXiv:0902.1483 , arXiv:1703.10624 ,arXiv:1704.08911,

the GW signals. The structure of the paper is as follows: in Sec. II, we describe the

e↵ective model of the dynamical CP violation for successful baryogenesis. In Sec.III, we

discuss the dynamics of the phase transition in detail. In Sec.IV, size of the dynamical CP

violation and the BAU are estimated. In Sec.V, the constraints and predictions from the

EDM measurements and colliders are given. In Sec.VI, we investigate the GW signal and

its correlation to the collider signals. Finally, we conclude in Sec.VII.

II. COSMOLOGICAL EVOLUTION OF THE YUKAWA COUPLING AND

BARYOGENESIS

Based on the fact that su�cient source of CP violation for successful baryogenesis are

typically severely constrained by EDM measurement, there is a possibility that the CP

violating coupling depends on the cosmological evolution history. During the early Universe,

there exists a large CP violation for successful baryogenesis. When the universe evolves to

the current time, the source of CP violation evolves to zero at tree level. In this work, we

study the CP -violating Yukawa coupling which evolves from a su�ciently large value to a

loop-suppressed small value at the current time, by assuming it depends on a dynamical

scalar field; i.e., the phase transition process can make the CP�violating Yukawa coupling

transit from a large value to zero at the tree level. A well-studied example is the CP -

violating top Yukawa coupling scenario as proposed in Refs. [15, 16]. Namely, there exist

extra terms to the SM top-quark Yukawa coupling which reads:

yt⌘
Sn

⇤n
Q̄L�̃tR + h.c. (1)

where yt =
p
2mt/v is the SM top-quark Yukawa coupling, ⌘ = a+ib is a complex parameter,

⇤ is the new physics (NP) scale, � is the SM Higgs doublet field, QL is the third-generation

SU(2)L quark doublet, tR is the right-handed top quark, and S is a real singlet scalar field

beyond the SM. During the phase transition process in the early universe, the scalar field S

acquires a VEV �, and then a sizable CP -violating top-Yukawa coupling can be obtained and

contribute to the EW baryogenesis for BAU. After the phase transition finishes, the VEV of

S vanishes and the Higgs field acquires a VEV v, meaning that the CP -violating top-quark

Yukawa coupling vanishes at the tree-level and evades the strong EDM constraints naturally.

4
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 After the first step of phase transition, S field obtains a VEV, 
and then the CP violating top quark Yukawa coupling is 
obtained.  
Thus, during the SFOPT, the top quark has a spatially varying 
complex mass

TABLE II: Benchmark points, which can give a SFOPT and produce phase transition GWs.

Benchmark set  mS [GeV] TN [GeV] ↵ �̃

I 2.00 115 106.6 0.035 107

II 2.00 135 113.6 0.04 120

IV. ELECTROWEAK BARYOGENESIS AND CP VIOLATION

In this section, we estimate the constraints on the dynamical source of CP violation

from the observed value of BAU. To produce the observed baryon asymmetry from EW

baryogenesis, CP violation is necessary to produce an excess of left-handed fermions versus

right-handed fermions and then generate net baryon excess through EW sphaleron pro-

cess [15, 16]. After the first step of phase transition, S field obtains a VEV, and then the

CP -violating top-quark Yukawa coupling is obtained. Thus, during the SFOPT, the top

quark in the bubble wall has a spatially varying complex mass, which is given by [15, 16]

mt(z) =
ytp
2
H(z)

⇣
1 + (1 + i)S(z)⇤

⌘
⌘ |mt(z)|ei⇥(z), where z is the coordinate perpendicular

to the bubble wall. The CP -violating phase ⇥ will provide the necessary CP violation for

the BAU. Taking the transport equations in Refs. [16, 62–64], one can estimate the BAU as

⌘B =
405�sph

4⇡2ṽbg⇤T

Z
dz µBL

fsph e
�45�sph|z|/(4ṽb), (15)

where ṽb is the relative velocity between the bubble wall and plasma front in the deflagration

case (the bubble wall velocity vb is smaller than the sound velocity cs =
p
3/3 ⇠ 0.57 in the

plasma). Here, µBL
is the left-handed baryon chemical potential, �sph is the sphaleron rate,

and fsph is a function that turns o↵ quickly in the broken phase. The position-dependent

⇥(z) can provide the CP-violating source in the transport equations and contribute to net

left-handed baryon µBL
. Here, we choose ṽb ⇠ 0.2, which is smaller than the bubble wall

velocity vb [34]. It is because the EW baryogenesis usually favors the deflagration bubble

case, and the BAU depends on the relative velocity between the bubble wall and the plasma

front. Thus, we have reasonably small relative velocity ṽb, which is favored by the EW

baryogenesis to guarantee a su�cient di↵usion process in front of the bubble wall and large

enough bubble wall velocity vb to produce stronger phase transition GWs (In the deflagration

case, a larger bubble wall velocity gives stronger GWs [33, 34]). We take the default value

of the bubble wall velocity vb ⇠ 0.5, which is reasonable since the di↵erence between ṽb and
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where ṽb is the relative velocity between the bubble wall and plasma front in the deflagration

case (the bubble wall velocity vb is smaller than the sound velocity cs =
p
3/3 ⇠ 0.57 in the

plasma). Here, µBL
is the left-handed baryon chemical potential, �sph is the sphaleron rate,

and fsph is a function that turns o↵ quickly in the broken phase. The position-dependent

⇥(z) can provide the CP-violating source in the transport equations and contribute to net

left-handed baryon µBL
. Here, we choose ṽb ⇠ 0.2, which is smaller than the bubble wall

velocity vb [34]. It is because the EW baryogenesis usually favors the deflagration bubble

case, and the BAU depends on the relative velocity between the bubble wall and the plasma

front. Thus, we have reasonably small relative velocity ṽb, which is favored by the EW

baryogenesis to guarantee a su�cient di↵usion process in front of the bubble wall and large

enough bubble wall velocity vb to produce stronger phase transition GWs (In the deflagration

case, a larger bubble wall velocity gives stronger GWs [33, 34]). We take the default value

of the bubble wall velocity vb ⇠ 0.5, which is reasonable since the di↵erence between ṽb and

10



We choose reasonably small relative velocity      ~ 0.2, which is favored 
by the EW baryogenesis to guarantee a sufficient diffusion process in 
front of the bubble wall, and large enough bubble wall velocity                
to produce stronger phase transition GW (Roughly speaking, for 
deflagration case, a larger bubble wall velocity      gives stronger GW) 

ṽb

vb

vb ⇠ 0.5

ṽb(0.2) < vb(0.5) < cs(
p
3/3)

• J. M. No, Phys. Rev. D 84, 124025 (2011) vb can be large for a SFOPT with a large washout parameter in the deflagration case.

From the roughly numerical estimation, we see that the observed BAU can be obtained

as long as ��/⇤ ⇠ 0.1 � 0.3, where �� is the change of � during the phase transition

and is determined by the phase transition dynamics. For the two benchmark sets given in

Table. II, the needed ⇤ should be around 1 TeV. Larger ⇤ gives smaller baryon density, and

smaller ⇤ produces an overdensity. The exact calculation of ⌘B would need improvements

from the nonperturbative dynamics of the phase transition and higher order calculations.

In the following, we discuss how to explore the parameters from the GWs, EDM data, and

collider data, which o↵er accurate constraints or predictions.

V. CONSTRAINTS AND PREDICTIONS IN PARTICLE PHYSICS EXPERI-

MENTS

After the SM Higgs obtains a VEV v at the end of the SFOPT, the SM Higgs doublet

field can be expanded around the VEV as �(x) ! 1p
2
(0, v +H(x))T . Thus, the interaction

between S and the top quark becomes

LStt = �
✓
mt

⇤
+

mtH

⇤v

◆
S (at̄t+ ibt̄�5t) . (16)

Top-quark loop-induced interactions between the scalar S and vector pairs are important

in our collider phenomenology study. In this work, mS, mH , and mS +mH are all assumed

smaller than 2mt, and mS > mH/2. So we can in most cases integrate out top-quark

loop e↵ects and use e↵ective couplings to approximately describe the interactions. Here we

use the covariant derivative expansion (CDE) approach [65–67] to calculate our e↵ective

Lagrangian. After straightforward calculations we obtain the relevant one-loop e↵ective

operators

L0
SV V

=
a↵S

12⇡⇤
SGa

µ⌫
Gaµ⌫ � b↵S

8⇡⇤
SGa

µ⌫
G̃aµ⌫ (17)

+
2a↵EW

9⇡⇤
SFµ⌫F

µ⌫ � b↵EW

3⇡⇤
SFµ⌫F̃

µ⌫ .

Detailed calculations can be referred in the Appendix.

Another e↵ect that needs to be considered here is the one-loop mixing e↵ect between the

11



Particle phenomenology induced by  
CP-violating top loop
After the SM Higgs obtains a VEV v at the end of the phase 
transition,  we have

The one-loop effective operators can be induced by covariant  
derivative expansion method

Mixing for H and S from one-loop contribution
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the inclusive HZ cross section to about 1.0% sensitivity. In Fig. 3 we draw contour lines for

di↵erent ratio �(HZ)
�SM (HZ) . Unlike the nearly symmetric shape the direct search lines, �(HZ)

shows a larger deviation in the lighter mS region. This e↵ect comes from the Higgs field

wave function renormalization, which is more sensitive to a lighter mS. This indirect de-

tection method shows good sensitivity, and gives complementary information on the model

parameters in addition to our direct search.
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Abundant collider signals
Hadron collider:  

Lepton collider (CEPC for example):
1.Direct search:  ZS production recoiled muon pair mass distribution:

2.Indirect search: ZH cross section deviation from mixing and field strength 
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CEPC. We are especially sensitive to regions with mS closer to 125 GeV, which corresponds

to an increasing S-H mixing.

In addition, S-H mixing could also be detected through a potentially visible deviation of

�(e+e� ! HZ) measurement, which can be an indirect signal of our model [98]. Further

more, wave function normalization of Higgs field which comes from 1
2S

2(�†�) reduces

�(e+e� ! HZ) by a global rescaling factor:

Z = 1 +
2v2

32⇡2m2
H

0

@1 � 4m2
S

m2
H

1q
4m2

S

m
2
H

� 1
arctan

1q
4m2

S

m
2
H

� 1

1

A . (25)

Here we fix  to 2, because a large  is favored by SFOPT. So �(e+e� ! HZ) will be

rescaled by a factor |O22|2Z. Quoting from the proposed precision of CEPC with 5 ab�1

data, it is capable to measure the inclusive HZ cross section to about 1.0% sensitivity. In

Fig. 3 we draw contour lines for di↵erent ratio �(HZ)
�SM (HZ) . Unlike the nearly symmetric shape

of our direct search lines, �(HZ) shows a larger deviation in light mS region. This e↵ect

comes from the Higgs field wave function normalization, which will be enhanced by a light

mS. This indirect detection method shows an even better search ability compared to the

direct peak search.

VI. GRAVITATIONAL WAVE SIGNALS AND THEIR CORRELATION WITH

COLLIDER SIGNALS

The key point to predict the phase transition GW signal is to calculate the two parameters

↵ and �̃ from the finite temperature e↵ective potential in Eq. (3) using the method described

in Sec. III. The two parameters are related to the phase transition strength and the inverse

of time duration, respectively. The GWs also depend on the energy e�ciency factors �i
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�(e+e� ! HZ) measurement, which can be an indirect signal of our model [98]. Further
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rescaled by a factor |O22|2Z. Quoting from the proposed precision of CEPC with 5 ab�1

data, it is capable to measure the inclusive HZ cross section to about 1.0% sensitivity. In

Fig. 3 we draw contour lines for di↵erent ratio �(HZ)
�SM (HZ) . Unlike the nearly symmetric shape

of our direct search lines, �(HZ) shows a larger deviation in light mS region. This e↵ect

comes from the Higgs field wave function normalization, which will be enhanced by a light

mS. This indirect detection method shows an even better search ability compared to the

direct peak search.

VI. GRAVITATIONAL WAVE SIGNALS AND THEIR CORRELATION WITH

COLLIDER SIGNALS

The key point to predict the phase transition GW signal is to calculate the two parameters

↵ and �̃ from the finite temperature e↵ective potential in Eq. (3) using the method described

in Sec. III. The two parameters are related to the phase transition strength and the inverse

of time duration, respectively. The GWs also depend on the energy e�ciency factors �i
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FIG. 6: Left: µµ recoil mass distribution for the SM background and signal, with ⇤ = 1 TeV
and mS = 115 GeV. Right: µµ recoil mass distribution for the SM background and signal, with
⇤ = 1 TeV and mS = 135 GeV. Vertical dotted black lines represent the mass window we choose.
Luminosity is taken at 5 ab

�1 following the CEPC report. The y axis represents the number of
events per bin, which is taken to be 0.25 GeV.

VI. GRAVITATIONAL WAVE SIGNALS AND THEIR CORRELATION WITH

COLLIDER SIGNALS

The key point to predict the phase transition GW signal is to calculate the two parameters

↵ and �̃ from the finite temperature e↵ective potential in Eq. (3) using the method described

in Sec. III. The two parameters are related to the phase transition strength and the inverse

of the time duration, respectively. The GWs also depend on the energy e�ciency factors �i

(i=col, turb, sw, denoting bubble collision, turbulence, and sound waves, respectively) and

bubble wall velocity vb. For the GW spectrum from bubble collisions, we use the formulas

from the envelope approximations [31, 97]:

⌦col(f)h
2 ' 1.67 ⇥ 10�5 ⇥

✓
0.11v3

b

0.42 + v2
b

◆
�̃�2

✓
�col↵

1 + ↵

◆2 ✓ 100

g⇤(TN
)

◆1/3 3.8(f/f̃col)2.8

1 + 2.8(f/f̃col)3.8
,

at the peak frequency

f̃col ' 1.65 ⇥ 10�5 Hz ⇥
✓

0.62

1.8 � 0.1vb + v2
b

◆
�̃

✓
TN

100 GeV

◆✓
g⇤(TN

)

100

◆1/6

. (26)
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pp ! HS

TABLE III: Production cross sections of S times branching ratios at 14 TeV LHC, with ⇤ = 1
TeV.

mS[GeV] �(pp ! S) ⇥ BR(S ! ��) �(pp ! S) ⇥ BR(S ! ZZ⇤)

115 37.73 fb 54.69 fb

135 18.38 fb 520.60 fb

third-order Chebychev polynomial function respectively. Parameters are fixed by fitting with

the CEPC group report [95]. The signal is a scalar-strahlung process e+e� ! Z⇤ ! ZS,

with a total cross section [96]

�(e+e� ! ZS) =
G2

F
m4

Z

96⇡s
(v2

e
+ a2

e
)|O12|2

p
�̃

�̃+ 12m2
Z
/s

(1 � m2
Z
/s)2

. (24)

Here ve = �1+ 4s2
w
, ae = �1, and �̃ = (s2 +m4

Z
+m4

S
� 2sm2

Z
� 2sm2

S
� 2m2

S
m2

Z
)/s2 where

p
s = 250 GeV, sw is sine of the Weinberg angle. The shape of the signal peak is estimated

and obtained by a rescaling and shifting from the fitted SM Higgs shape. Figure 6 shows the

recoil mass distribution. Then we count the number of SM background and signal events in

the [mS�1GeV,mS+1GeV] mass window, noted as B and S respectively. So the significance

can be written as S/
p

B + ✏2B2, with ✏ = 1.0% being the dominant systematic uncertainty.

The region with S/
p

B + ✏2B2 > 5 can be observed at 5 ab�1 CEPC with a significance

higher than 5�, and the curve is shown as well in Fig. 3. It is clear from Fig. 3 that there is

a large currently allowed parameter space that can be covered by High Luminosity LHC or

CEPC. We are especially sensitive to regions with mS closer to 125 GeV, which corresponds

to an increasing S-H mixing.

In addition, S-H mixing could also be detected through a potentially visible deviation

of �(e+e� ! HZ) measurement, which can be an indirect signal of our model [98]. Fur-

thermore, wave function renormalization of the Higgs field which comes from 1
2S

2(�†�)

reduces �(e+e� ! HZ) by a global rescaling factor:

Z = 1 � 2v2

32⇡2m2
H

0

@4m2
S

m2
H

1q
4m2

S

m
2
H

� 1
arctan

1q
4m2

S

m
2
H

� 1
� 1

1

A . (25)

As a result, the total cross section �(e+e� ! HZ) will be rescaled by a factor of |O22|2Z.

Quoting from the proposed precision of CEPC with 5 ab�1 data, it is capable to measure
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Current exclusion limit and future search sensitivity projected on & versus ms
plane.The regions below dotted blue lines have been excluded by EDM 
measurement; regions below dashed  red lines have been excluded by collider 
scalar searches and Higgs data. In the left plot, regions below dash dotted olive 
lines can be observed from ZS production at 5 ab#1 CEPC with a C.L.  higher 
than 5'. In the right plot, we show the ratio  of ZH cross section with purple 
dash dotted contour lines.  

N.B.     Limit from EDM is much weaker than Higgs data, due to  
the fact the contributions to EDM in this scenario come from three-loop contributions 
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The correlation between the future GW and collider signals
cerned scenario with the benchmark parameter sets. From Fig. 7, we can see that the GWs
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FIG. 7: The correlation between the GW spectrum and the associated collider signals for the
benchmark sets with  = 2 and ⇤ = 1 TeV. The colored regions depict the expected sensitivities
from the future GW experiments LISA, BBO and U-DECIGO, respectively. The black line repre-
sents the phase transition GW spectrum for the benchmark sets at mS = 115 GeV, which is related
to the detectable lepton collider signal with a cross section �(SZ) = 13.6 fb at CEPC . The green
line represents the case for another benchmark set at mS = 135 GeV.

produced in this EW baryogenesis scenario can be detected marginally by LISA, BBO and

certainly by U-DECIGO. We also show the corresponding CEPC cross sections as a double

test on this scenario, and vice versa. For example taking benchmark set I, the GW spectrum

is represented by the black line in Fig. 7, which can be detected by LISA and U-DECIGO.

The black line also corresponds to 0.9339�SM(HZ) of the HZ cross section for e+e� ! HZ

process and 115 GeV recoil mass with 13.6 fb cross section for the e+e� ! SZ process at

CEPC, which has a 5� discovery potential with 5 ab�1 luminosity at CEPC. Other lepton

colliders are similarly capable to detect this collider signals, such as ILC and FCC-ee. The

observation of GWs with several mHz peak frequency at LISA and the observation of the 115

GeV recoil mass at CEPC are related by this EW baryogenesis scenario. We can see that

the future lepton collider and GW detecter make a double test on the scenario [100–103].

VII. CONCLUSION

We have studied the collider search and GW detection of the EW baryogenesis scenario

with a dynamical source of CP violation realized by a two-step phase transition. The VEV

of a new scalar field hSi evolves with the two-step phase transition, and provides both the

20

For example taking benchmark set I, the GW spectrum is represented by the black line, which can be detected by LISA and U-
DECIGO. The black line also corresponds to 0.9339'SM(HZ) of the HZ cross section for e+e# ( HZ process and 115 GeV recoil 
mass with 13.6 fb cross section for the e+e# ( SZ process, which has a 5' discovery potential with 5 ab#1 luminosity at CEPC. 



Schematic phase transition GW spectra
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Conclusion
The SKA-like and LISA-like experiments (more and more 
experiments, SKA, FAST,GBT, aLIGO, LISA, Tianqin, Taij)    

can provide new approaches to explore the nature of dark 
matter and baryon asymmetry of the universe.           

Comments and collaborations are welcome!

Thanks for your attention!


